
Bacula Infrastructure Recovery
Bacula Systems Documentation

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 1

Contents

1 Disaster Recovery 2
1.1 Disaster Recovery Preparation . 2
1.2 Storage Considerations . 3
1.3 Mirroring Data between Data Centers . 4
1.4 Disaster Recovery Plan . 4
1.5 Standard Recovery Solution . 8

2 High Availability 12
2.1 Solution Comparison . 12
2.2 High Availability Clustering Solution . 13

3 Bootstrap File 16
3.1 Bootstrap File Format . 16
3.2 Automatic Generation of Bootstrap Files . 21
3.3 Bootstrap for bscan . 21
3.4 Final Bootstrap Example . 22

Contents

The following chapter explains the measures to setup within your Bacula infrastructure, so that in case
of disaster recovery or attacked, you could rebuild as quickly as possible a new Bacula infrastructure and
start to restore your data. It presents how to prepare for and recover your Bacula installation in a disaster
situation. It also presents different strategies to limit the downtime of your backup service after a major
outage.

Obviously, the Security Chapter is key to consider in order to protect your data and the Bacula infras-
tructure.

1 Disaster Recovery

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise the work
of recovering your system and your files will be considerably greater. For example, if you have not
previously saved the partitioning information for your hard disk, how can you properly rebuild it if the
disk must be replaced?

1.1 Disaster Recovery Preparation

• Ensure that you always have a valid bootstrap file for your backup and your Catalog backup and
that it is saved to an alternate machine. This will permit you to easily do a full restore of your
system.

• Ensure that your Catalog is saved everyday. You can also add Bacula configuration files to the
BackupCatalog default Fileset.

• If possible copy your Catalog nightly to an alternate machine. If you have a valid bootstrap file,
this is not necessary, but can be very useful if you do not want to reload everything.

2 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

• Make a copy of your Bacula .conf files, particularly your bacula-dir.conf, and your
bacula-sd.conf files, because if your server goes down, these files will be needed to get it back
up and running, and they can be difficult to rebuild from memory. Using a source version control
system such as git or svn with a remote repository on your configuration and scripts directories
can help you to track configuration changes and do remote backup after each modifications.

• Perform tests using the Rescue USB or CDROM before you are forced to use it in an emergency
situation.

• Ensure that you have captured the disk partitioning layout on all servers to be protected. The
Bacula Systems USB key for Linux and for Windows automates this process.

1.2 Storage Considerations

If the building which houses your computers burns down or is otherwise destroyed, do you have off-site
backup data? Having off-site storage is rather easy with tapes, you can store them in a vault or in a bank
safety deposit box at regular interval. With big disk array it’s not so easy, you should handle them with
care and you can’t move them easily. You can cross your backups between sites if you have more than
one data-center, or use long distance replication over some Storage Cloud provider. Depending on the
amount of data, the long distance replication could be rather expensive. Incremental forever techniques
can help you to reduce network bandwidth, but you should also think about how fast all your data can
be restored. Some Cloud Storage providers let you access to their data center in emergency case, and fill
your hard drives directly to the source.

Fig. 1: Cross backup with multiple data center

Sometimes, to make profitable a big investment on expensive disk array infrastructure, users would like
to store their Bacula volumes on the same hardware. Because everything is redundant, with multiple FC
switches, multiple links, spare disks, etc., you may think that your data is safe, but if something goes
wrong with your new hardware, Murphy’s law may mean that you will lose your production data and
your backups at the same time.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 3

Fig. 2: Using Storage Cloud provider

1.3 Mirroring Data between Data Centers

Recovering the backup system without the backup system fully functional is a tricky job. Mirroring your
Bacula backup servers between your data centers can avoid lot of stress in critical situations. As you
will see, running the Director and the Catalog in cluster mode with configuration, binaries and database
replication is a powerful way to minimize downtime of your Bacula backup service.

If you decide to mirror also your Bacula Storage Daemons, you should decide how your volumes will be
available on both hosts. When dealing with large amount of data, mirroring it can double the cost of your
solution. If you decide to make your storage area available for both nodes, it should be coherent with
your disaster protection plan. For example, if the building hosting the storage device (tapes or disks) and
the primary Storage Daemon burns down, your second Storage Daemon won’t be very useful. In this
case, you will be protected only for a Storage Daemon server hardware failure.

In this situation, you can decide to mirror only critical Pools.

1.4 Disaster Recovery Plan

Note: Having a full disaster recovery plan is something quite complicated. It must be tailored to exact
requirements of each site, and thus can only be created by working closely with the decision makers and
operational personnel of that data center. As a consequence, this paper will not provide a specific disaster
recovery plan, but will present most of the elements involved in coming up with such a plan.

We specifically do not cover certain critical areas which are mostly “hardware” related such as power,
A/C, flood prevention, multiple power sources, UPSes, telecommunications links, multiple telecommu-
nications links, and preventing single point of failure.

4 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

Bacula Installation Disaster Recovery Plan

Design a backup strategy in case of disaster recovery (more information is available in the ItemsToIm-
plementBeforeProduction chapter).

• Backup your Catalog and store the (bootstrap) file in a safe location.

• Backup your DIR and SD configuration files (if you are using BWeb Management Suite, please
backup the folder).

• Backup the File Daemon private/public key pair and/or the master keys if Data Encryption is used
for the Catalog backup.

As a best practice, document your backup design to provide a good overview and enhance the under-
standing of your backup infrastructure.

Test your tape library infrastructure using the btape utility.

Bacula Configuration and Backups Disaster Recovery Plan

Your Disaster Recovery plan should include Bacula configuration and backups. In order to do so, you
can have off-site backups including your configuration.

The needs are simple, the backups (for example the last Full backups of your systems), the content of
/opt/bacula/ect and the Catalog.

The backups can be copied or migrated using Copy/Migration Jobs from one site to a safe site using
schedules.

If you are using tapes, you can remove a set of tapes after the Full backups and store them in an off-site
vault.

The most important part of this plan is that the Catalog and the configuration files are kept together.

Example

This is an example which you need to adapt to your own system.

First, set up a job that will backup /opt/bacula/etc and your catalog dump.

We would advise to have all Bacula configuration (/opt/bacula/etc content) as well as the catalog
backup in a dedicated pool to ease the process of recovery as the Job will not be mixed into numerous
other Jobs. Catalog and configuration files are all you need for recovering your backup environment. We
will split the backup in 2 parts to insure consistency of the Catalog data.

This way we set up a specific pool for our Bacula configuration and Catalog backup, 2 jobs per volume.
Of course you can tweak this example to have more files backed up to build your own disaster recovery
plan (eg. TLS keys etc.).

Here is an example of a Pool on hard drives backing up a disaster recovery Job

Pool {
Name = "DisasterRecovery-pool"
ActionOnPurge = Truncate
AutoPrune = yes
FileRetention = 7 days # Adjust to the schedule of the Disaster Recovery job

here it is kept 7 days before recycling
JobRetention = 7 days # This is the minimum we want to keep our DR data␣

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 5

(continued from previous page)

→˓safe
LabelFormat = "Disaster-"
PoolType = "Backup"
Recycle = yes
Storage = "OnDisk"
MaximumVolumeJobs = 2 # Here we want to keep config files and dump on the␣

→˓same
volume. Adjust here if you don't want 2 jobs per␣

→˓volume
VolumeRetention = 8 days
VolumeUseDuration = 20 hours # How long do you want your volume available.␣

→˓No more
than one day (because you will run on DR␣

→˓backup job
per day, but not too short in case something␣

→˓goes
wrong during the backup.
Adjust here depending on your policy

Maximum Volumes = 10 # 7 generations kept, one written, some spare
}

Here is an example Job and Fileset for Disaster Recovery backups

Fileset {
Name = "DisasterRecovery-catalog-fs" # Fileset for the Catalog
Include {

Options {
Signature = SHA1

}
File = /opt/bacula/working/bacula.sql # where the Bacula catalog dump␣

→˓goes
to be adjusted with your catalog
dump

}
}

Fileset {
Name = "DisasterRecovery-config-fs" # Fileset for the Bacula Enterprise

configuration files
Include {

Options {
Signature = SHA1

}
File = /opt/bacula/etc # Director's config files

you can add other files like keys,
content of /etc, and other directories
to make this Fileset more complete and
adapted to your environment

}
}

Job {
(continues on next page)

6 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

Name = "DisasterRecovery-catalog-job"
Type = "Backup"
Client = "baculaServer" # change to the name of the fd running on the␣

→˓Bacula DIR
Fileset = "DisasterRecovery-catalog-fs"
JobDefs = "Default-jd"
Level = "Full" # full backup is preferable
Messages = "Standard"
Pool = "DisasterRecovery-pool" # the pool we just defined to hold all the␣

→˓DR config
Priority = 20 # Adjust this priority to be the highest of the schedule
Runscript {

Command = "/opt/bacula/scripts/make_catalog_backup bacula bacula"
RunsOnClient = no
RunsWhen = Before

}
Runscript {

Command = "/opt/bacula/scripts/delete_catalog_backup"
RunsOnClient = no
RunsWhen = After

}
Schedule = "NightAfterJobs"
Storage = "OnDisk"
WriteBootstrap = "/opt/bacula/bsr/catalog-backup.bsr"

}

Job {
Name = "DisasterRecovery-config-job"
Type = "Backup"
Client = "baculaServer" # change to the name of the fd running on the␣

→˓Bacula DIR
Fileset = "DisasterRecovery-config-fs"
JobDefs = "Default-jd"
Level = "Full" # full backup is preferable
Messages = "Standard"
Pool = "DisasterRecovery-pool" # the pool we just defined to hold your DR␣

→˓config
Priority = 15 # Adjust if necessary. Must be lower than the catalog's one
Schedule = "NightAfterJobs"
Storage = "OnDisk"
WriteBootstrap = "/opt/bacula/bsr/config-backup.bsr"

}

Here we set different priority for the 2 jobs to ensure that the job that backs up the catalog runs after the
backup of the configuration file.

This way, in case of Disaster, you reinstall the same version of Bacula, then you just need to grab the
last volume from the DisasterRecovery-pool and use bxtract to extract all its content. The 2 Jobs will
contain the catalog and the config.

You need to re-inject the catalog dump in your database, copy the config files to /opt/bacula/etc/ and
everything is back online. (Test with /opt/bacula/bin/bacula-dir -t -u bacula -g bacula

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 7

before launching the daemons.)

Important: Test your Disaster Recovery procedure and document it.

1.5 Standard Recovery Solution

As Bacula is able to backup and restore any Unix/Linux system files such as char and block devices,
hardlinks, symlinks, etc., it’s possible to use it directly to do system recovery.

System Recovery Preparation

The safest way to restore a system, is to backup everything. The following Fileset should work on any
Linux systems.

Fileset {
Name = "LINUX_SYSTEM"
Include {
Options { signature = MD5; onefs = no }
File = /

}
Exclude {
File = /tmp/
File = /var/tmp/
File = /proc
File = /sys
File = /opt/bacula/working
File = /home # skip server data

}
}

If you are using the Bare Metal Recovery kit, you will need to run the network and disk analysis tool as
ClientRunBeforeJob Runscript.

You will probably want to exclude non-system data from this Fileset such as /home and use an other
Fileset that will backup only these files with a more frequent schedule policy. If you have many identical
servers (same OS, same version), you can consider to use Bacula Enterprise File Deduplication feature
called BaseJobs.

Fileset {
Name = "SERVER1_DATA"
Include {
Options { signature = MD5; onefs = no }
File = /home

}
}

8 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

General GNU/Linux System Recovery

You will take the following steps to get your system back up and running:

1. Boot with your Rescue USB or CDROM on your new or repaired system

2. Start the Network (local network)

3. Re-partition your hard disk(s) as it was before

4. Re-format your partitions

5. Install or start the Bacula File daemon (static version)

6. Perform a Bacula restore of all your files

7. Re-install your boot loader

8. Reboot

For details on recovery, see the DisasterRecovery chapter.

GNU/Linux Bare Metal Recovery

Bacula Systems provides Linux Bare Metal recovery kit that can help you to recover your servers very
quickly. This tool is designed to collect and handle Network configuration and disk layout for your
systems in an automatic way after each regular Full backup.

1. Boot with your Bare Metal Recovery USB or CDROM on your new or repaired system

2. Start the Network (local network). Do not proceed until your network is up.

3. Re-partition and format your hard disk(s) as it was before using Bare Metal Recovery tools

4. Perform a Bacula restore of all your files using Bare Metal Recovery tools

5. Re-install your boot loader

6. Reboot

For details on Bare Metal Recovery, see the Bare Metal Recovery for Linux chapter.

Windows Bare Metal Recovery

Bacula Systems provides Windows Bare Metal recovery kit that can help you to recover your servers
very quickly. You can read more information about this tool in the Bare Metal Recovery for Windows
chapter.

Bacula Configuration Recovery

When using Bacula Enterprise packages, everything needed to run and configure Bacula is located under
/opt/bacula. Installing basic dependencies such as PostgreSQL or MySQL client library (using Bacula
Systems RPMs), and restoring this directory on a new server means that you can start a new Bacula very
quickly. This technique can be used to restore your Director as explained in the director_recovery section.
The following Fileset can be used for this purpose:

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 9

Fileset {
Name = "BACULA_DATA"
Include {
Options { signature = MD5 }
File = /opt/bacula
File = /etc

}
Exclude {
File = /opt/bacula/working

}
}

If you have special Linux configuration such as network parameters or system tuning, restoring /etc
should cover almost everything.

Director Recovery

If your configuration and binaries are saved on an other backup server (such as a Storage Daemon, or the
Catalog server) as advised, you should be able to recover your Director with the following actions:

• Adjust the new binary path in either the bacula-dir.service unit file or the bacula-ctl-dir`
startup script if needed. Usually they are locate in the /opt/bacula/bin directory and the binary path
doesn’t require any change

• Comment all Job Schedule directives in bacula-dir.conf

• Affect the Director IP address to your temporary server

• Ensure that your temporary Director can connect to the Catalog (in pg_hba.conf or in mysql
database).

• Start the temporary Director Daemon

• Start the Bare Metal or Standard Recovery procedure on your Director

• Stop the temporary Director and un-configure the Director IP address

• Reboot to the fresh Director

• Test your Director by doing one backup and restore of files per Storage Daemon

If your Director and your Catalog are on the same host, you need to restore the Catalog first or use a
Bootstrap file as explained here.

Storage Daemon Recovery

Since this white paper is designed for multiple Storage Daemons environment, we advise you to cross
Storage Daemon backups. In this case, this is very easy to restore the system using Bare Metal or General
Recovery procedure and restore all needed configurations and binaries.

Once your server is up, you should test carefully your storage system as it was the first installation. These
tests should include at least:

• Test your tape drive for compatibility with Bacula by using the test command in the btape program.

• Do one backup and restore of files.

10 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

Catalog Recovery

Using Warm Standby or Log Shipping

NTT has developed a shared-nothing replication system for PostgreSQL implemented with transaction
log shipping. The goal is to minimize the system downtime and the impact for update performance.
Failover can be done within 15 seconds and the overhead is at worst 7% on heavily updated workloads
in the current implementation.

Fig. 3: PostgreSQL catalog hot-standby

Using this technology, you are able to always have a valid copy of your Catalog across the network. If
something goes wrong with your Catalog server, you just have to activate the PostgreSQL master mode
on the backup node, change the virtual IP address and restart the Director.

The detail of those procedures are available on https://www.postgresql.org/docs/current/
high-availability.html

Using Catalog Backup

If you have backed up your database nightly (as you should) and you have made a bootstrap file, you
can rapidly restore your database (or the ASCII SQL output). Make a copy of your current database,
re-initialize it, then you should be able to run Bacula. If you now try to use the restore command, it will
not work because the database will be empty. However, you can manually run a restore job and specify
your bootstrap file. Once the database is restored, you can start the database import process. When
restoring from the ASCII SQL file, depending of the Catalog size, it can take several hours to complete.
Restoration can be done much faster if you use binary backups of the Catalog.

Note that it’s also possible to recover your Catalog backup with the backup Job output, or by scanning
volumes. All these procedures are completely described in The Restore Command chapter of the manual.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 11

https://www.postgresql.org/docs/current/high-availability.html
https://www.postgresql.org/docs/current/high-availability.html

2 High Availability

Bacula has several different ways to perform High Availability, some of them are easy to implement but
not fully automatic, others are more complex, but can reduce the downtime to a couple of seconds.

High Availability solutions are described for GNU/RHEL systems, database High Availability solutions
are described for PostgreSQL.

Fig. 4: Bacula Components

2.1 Solution Comparison

Max.
down-
time

Solution Notes

< 5
mins

High Availability cluster and
database block level replication

Need to be experienced with clustering technologies
such as HACMP, HeartBeat- /Pacemaker, etc.

< 1-3
hours

Spare hardware and database
replication

Need a clear procedure to restore Bacula and use Post-
greSQL internal replication.

< 12
hours

Spare hardware and database re-
store

Need a clear procedure to restore Bacula and you can
restore PostgreSQL catalog from the last backup.

If you loose your Catalog server, all records about jobs that ran after your previous Catalog backup
will be lost. Keeping trace of emails and Bootstrap files is sufficient to restore files, but it’s not very

12 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

convenient. To avoid this problem, you can use the PostgreSQL Continuous Archiving option and do
binary Catalog backups instead of the default SQL dump procedure. See https://www.postgresql.org/
docs/current/continuous-archiving.html for more information.

2.2 High Availability Clustering Solution

This solution provides a high-end solution for Bacula. If you are not experienced with these technologies,
it can represent important training costs. Your needs should drive your decisions.

Using spare hardware, Bacula can be integrated with standard OpenSource Linux clustering solutions
such as Heartbeat or Pacemaker from http://www.linux-ha.org

In the event of a failure, resource managers like Pacemaker or Heartbeat will automatically initiate
recovery and make sure your application is available from one of the remaining machines in the cluster.
Pacemaker is the new version of Heartbeat, it permits handling very complex cluster setups. With Bacula,
this level of complexity is not needed so we advise you to run in a simple Primary/Slave situation, the
rest of the document will refer to Heartbeat as the resource manager.

The data replication of the PostgreSQL server can be done with DRBD (Data Block Device Replication)
tools from LINBIT. (http://linbit.com)

Proposed Architecture

A large site will need to run multiple Storage Daemons per Director (SD1 and SD2 in the schema), and
you will probably need a dedicated PostgreSQL Catalog server per Director (SGBD on the schema).

Fig. 5: Using Bacula in a multiple data center environment

All servers should have :

• RAID hardware with WriteBack capabilities

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 13

https://www.postgresql.org/docs/current/continuous-archiving.html
https://www.postgresql.org/docs/current/continuous-archiving.html
http://www.linux-ha.org
http://linbit.com

• Multiple Ethernet links aggregated with failover detection using bonding kernel module, these
links should be connected to different and independent network equipment

• Hot plug and redundant power supply.

In this architecture, each server that is used for your Bacula installation should be protected by second one
located in the other data center. Each couple of cluster nodes should have a dedicated direct Ethernet
fiber optic link and may implement a STONITH mechanism. If your Storage Daemons has a single
point of failure (because your disks are not mirrored between data centers for example, or you have an
Autochanger directly connected), you won’t necessarily need to protect them at the same level, and some
spare hardware should be sufficient.

Cluster Resources

The role of a resource agent is to abstract the service it provides and present a consistent view to the
cluster, which allows the cluster to be agnostic about the resources it manages. The cluster doesn’t need
to understand how the resource works because it relies on the resource agent to do the right thing when
given a start, stop or monitor command.

Typically resource agents come in the form of shell scripts, however they can be written using any tech-
nology (such as C, Python or Perl) that the author is comfortable with. With Bacula, the following default
resources will be used in the resource manager tool:

Fig. 6: Pacemaker/Heartbeat service definition

• Virtual IP Addresses

• Bacula Director service

• Bacula Storage services

• Backup storage filesystems

• PostgreSQL catalog service

• PostgreSQL data and configuration filesystem

When using cluster techniques, a very common way to ensure that you can move or restart a service
elsewhere on your internal network without having to reconfigure all your clients is to use virtual IP
addresses for all your components. All Bacula components should have their own virtual IP address,

14 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

the resource manager (Heartbeat) will ensure that only one primary node is using it at a time on your
network.

Since Bacula isn’t designed to reconnect automatically when a TCP connection drops, running jobs will
fail when a resource is moved from one location to another. Make sure that Bacula is stopped before
moving services between hosts.

For example, the Director (host bacula-dir1) HeartBeat resource definition will look like:

bacula-dir1 IPAddr::10.0.0.2/24 bacula-dir httpd

Bacula Configuration Synchronization

In this solution, the resource manager (Heartbeat) will detect if a node or a service has a failure and
will restart it at the right place, but it won’t ensure that Bacula’s configuration is synchronized between
nodes. A simple and flexible way to do that is to use rsync at regular intervals on the master node and
automatically after a reload command.

PostgreSQL Catalog

Protecting your SQL Catalog (PostgreSQL or MySQL) is a very large subject, there are dozens of tech-
niques that accomplish the job.

The PostgreSQL High Availability configuration is the most complex part of this setup, to be able to
restart the service on the second node after an outage, data should be replicated between nodes. This repli-
cation can use high end hardware, standard PostgreSQL replication or DRBD replication layer (RAID1
over the network, see http://linbit.com)

Clusters using HeartBeat, DRBD and PostgreSQL are very common in the OpenSource world, and it’s
rather easy to find knowledge and resources about them.

Data Replication

DRBD is OpenSource and has been in development for over 10 years and continues to undergo feature
upgrades, it has been officially accepted into the Linux Kernel 2.6.33, it is simple, fast and flexible, it has
transaction safe technology; this means that DRBD is designed to replicate data in a reliable, secure and
safe method no matter how sensitive your payload is. DRBD has support options: it may be installation
assistance, 24/7 support or a single support incident, LINBIT can help.

The performance cost of this block level replication is around 10/15% of the overall disk throughput,
but it has the major advantage to be very safe and simple during standby/takeover operations, it’s almost
impossible to loose your data with bad sequence of commands. Streaming replication using PostgreSQL
is faster, but requires taking careful steps before reactivating the replication and being protected again.

Since DRBD is well integrated with HeartBeat (LINBIT is now the official maintainer of HeartBeat
resource manager), once volumes are initialized and synchronized, the HeartBeat resource definition on
the bacula-sql1 host will look like:

bacula-sql1 IPAddr::10.0.0.1/24 drbddisk::postgres \
Filesystem::/dev/drbd0::/pgdata::ext3 postgresql

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 15

http://linbit.com

Fig. 7: DRBD architecture

3 Bootstrap File

The information in this chapter is provided so that you may either create your own bootstrap files, or
so that you can edit a bootstrap file produced by Bacula. However, normally the bootstrap file will be
automatically created for you during the Bacula Console or by using a Write Bootstrap record in your
Backup Jobs, and thus you will never need to know the details of this file.

The bootstrap file contains ASCII information that permits precise specification of what files should be
restored, what volume they are on, and where they are on the volume. It is a relatively compact form of
specifying the information, is human readable, and can be edited with any text editor.

3.1 Bootstrap File Format

The general format of a bootstrap file is:

<keyword>= <value>

Where each keyword and the value specify which files to restore. More precisely the keyword and their
values serve to limit which files will be restored and thus act as a filter. The absence of a keyword means
that all records will be accepted.

Blank lines and lines beginning with a pound sign (#) in the bootstrap file are ignored.

There are keywords which permit filtering by Volume, Client, Job, FileIndex, Session Id, Session Time,
etc.

The more keywords that are specified, the more selective the specification of which files to restore will
be. In fact, each keyword is ANDed with other keywords that may be present.

For example:

16 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

Volume = Test-001

VolSessionId = 1

VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those files on Volume Test-001
AND having VolumeSessionId equal to one AND having VolumeSession time equal to 108927638.

The full set of permitted keywords presented in the order in which they are matched against the Volume
records are:

Volume The value field specifies what Volume the following commands apply to. Each Volume spec-
ification becomes the current Volume, to which all the following commands apply until a new current
Volume (if any) is specified. If the Volume name contains spaces, it should be enclosed in quotes. At
lease one Volume specification is required.

Count The value is the total number of files that will be restored for this Volume. This allows the Storage
daemon to know when to stop reading the Volume. This value is optional.

VolFile The value is a file number, a list of file numbers, or a range of file numbers to match on the
current Volume. The file number represents the physical file on the Volume where the data is stored. For
a tape volume, this record is used to position to the correct starting file, and once the tape is past the last
specified file, reading will stop.

VolBlock The value is a block number, a list of block numbers, or a range of block numbers to match
on the current Volume. The block number represents the physical block within the file on the Volume
where the data is stored.

VolSessionTime The value specifies a Volume Session Time to be matched from the current volume.

VolSessionId The value specifies a VolSessionId, a list of volume session ids, or a range of volume
session ids to be matched from the current Volume. Each VolSessionId and VolSessionTime pair corre-
sponds to a unique Job that is backed up on the Volume.

JobId The value specifies a JobId, list of JobIds, or range of JobIds to be selected from the current
Volume. Note, the JobId may not be unique if you have multiple Directors, or if you have reinitialized
your database. The JobId filter works only if you do not run multiple simultaneous Jobs. This value is
optional and not used by to restore files.

Job The value specifies a Job name or list of Job names to be matched on the current Volume. The Job
corresponds to a unique VolSessionId and VolSessionTime pair. However, the Job is perhaps a bit more
readable by humans. Standard regular expressions (wildcards) may be used to match Job names. The
Job filter works only if you do not run multiple simultaneous jobs. The value specifies a Client name or
list of Clients to be matched on the current Volume.

Client The value specifies a Client name or list of Clients to will be matched on the current Volume.

The Client filter works only if you do not run multiple simultaneous Jobs. This value is optional and not
used by to restore files.

FileIndex The value specifies a FileIndex, list of FileIndexes, or range of FileIndexes to be selected from
the current Volume. Each file (object) stored on a Volume within a Session has a unique FileIndex. For
each Session, the first file written is assigned FileIndex equal to one and the value is incremented for
each file backed up.

Thus for a given Volume, the triple VolSessionId, VolSessionTime, and FileIndex uniquely identifies a
file stored on the Volume. Multiple copies of the same file may be stored on the same Volume, but for

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 17

each file, the triple VolSessionId, VolSessionTime, and FileIndex will be unique. This triple is stored in
the Catalog database for each file.

To restore a particular file, this value (or a range of FileIndexes) is required.

FileRegex The value is a regular expression. When specified, only matching filenames will be restored.

FileRegex=^/etc/passwd(.old)?

Slot The value specifies the autochanger slot. There may be only a single Slot specification for each
Volume.

Stream The value specifies a Stream, a list of Streams, or a range of Streams to be selected from the
current Volume. Unless you really know what you are doing (the internals of Bacula), you should avoid
this specification. This value is optional and not used by Bacula to restore files.

*JobType Not yet implemented.

*JobLevel Not yet implemented.

The Volume record is a bit special in that it must be the first record. The other keyword records may
appear in any order and any number following a Volume record.

Multiple Volume records may be specified in the same bootstrap file, but each one starts a new set of
filter criteria for the Volume.

In processing the bootstrap file within the current Volume, each filter specified by a keyword is ANDed
with the next. Thus,

Volume = Test-01

Client = "My machine"

FileIndex = 1

will match records on Volume Test-01 AND Client records for My machine AND FileIndex equal to
one.

Multiple occurrences of the same record are ORed together. Thus,

Volume = Test-01

Client = "My machine"

Client = "Backup machine"

FileIndex = 1

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND FileIndex equal to one.

For integer values, you may supply a range or a list, and for all other values except Volumes, you may
specify a list. A list is equivalent to multiple records of the same keyword. For example,

Volume = Test-01

Client = "My machine", "Backup machine"

FileIndex = 1-20, 35

18 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND (FileIndex 1 OR 2 OR 3 . . . OR 20 OR 35).

As previously mentioned, there may be multiple Volume records in a bootstrap file. Each new Volume
definition begins a new set of filter conditions that apply to that Volume and will be ORed with any other
Volume definitions.

As an example, suppose we query for the current set of tapes to restore all files on Client Rufus using
the query command in the console program:

Using default Catalog name=MySQL DB=bacula
*query
Available queries:

1: List Job totals:

2: List where a file is saved:

3: List where the most recent copies of a file are saved:

4: List total files/bytes by Job:

5: List total files/bytes by Volume:

6: List last 10 Full Backups for a Client:

7: List Volumes used by selected JobId:

8: List Volumes to Restore All Files: Choose a query (1-8): 8

Enter Client Name: Rufus

JobId StartTime VolumeName StartFile VolSesId VolSesTime
154 2002-05-30 12:08 test-02 0 1 1022753312
202 2002-06-15 12:08 test-02 0 2 1024128917
203 2002-06-15 12:08 test-02 3 1 1024132350
204 2002-06-18 12:08 test-02 4 1 1024380678

The output shows us that there are four Jobs that must be restored. The first one is a Full backup, and the
following three are all Incremental backups.

The following bootstrap file will restore those files:

Volume=test-02

VolSessionId=1

VolSessionTime=1022753312

Volume=test-02

VolSessionId=2

VolSessionTime=1024128917
(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 19

(continued from previous page)

Volume=test-02

VolSessionId=1

VolSessionTime=1024132350

Volume=test-02

VolSessionId=1

VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes. The output from might look
like:

JobId StartTime VolumeName StartFile VolSesId VolSesTime
242 2002-06-25 16:50 File0003 0 1 1025016612
242 2002-06-25 16:50 File0004 0 2 1025016612
243 2002-06-25 16:52 File0005 3 1 1025016612
246 2002-06-25 19:19 File0006 4 1 1025025494

and the following bootstrap file would restore those files:

Volume=File0003

VolSessionId=1

VolSessionTime=1025016612

Volume=File0004

VolSessionId=1

VolSessionTime=1025016612

Volume=File0005

VolSessionId=2

VolSessionTime=1025016612

Volume=File0006

VolSessionId=2

VolSessionTime=1025025494

20 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

3.2 Automatic Generation of Bootstrap Files

One thing that is probably worth knowing: the bootstrap files that are generated automatically at the
end of the job are not as optimized as those generated by the restore command. This is because during
Incremental and Differential jobs, the records pertaining to the files written for the Job are appended to
the end of the bootstrap file. As consequence, all the files saved to an Incremental or Differential job will
be restored first by the Full save, then by any Incremental or Differential saves.

When the bootstrap file is generated for the restore command, only one copy (the most recent) of each
file is restored.

So if you have spare cycles on your machine, you could optimize the bootstrap files by doing the follow-
ing:

./bconsole

restore client=xxx select all

done

no

quit

Backup bootstrap file.

The above will not work if you have multiple Filesets because that will be an extra prompt. However,
the restore client=xxx select all builds the in-memory tree, selecting everything and creates the bootstrap
file.

The no answers the Do you want to run this (yes/mod/no) question.

3.3 Bootstrap for bscan

If you have a very large number of Volumes to scan with bscan, you may exceed the command line
limit (511 characters). I that case, you can create a simple bootstrap file that consists of only the volume
names. An example might be:

Volume="Vol001"

Volume="Vol002"

Volume="Vol003"

Volume="Vol004"

Volume="Vol005"

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 21

3.4 Final Bootstrap Example

If you want to extract a single Job, you can do it by applying VolSessionTime and the VolSessionId taken
from a Job report or the Catalog. A .bsr file might look like the following:

Volume="Vol001"

VolSessionId=10

VolSessionTime=1080847820

If you know how many files are backed up (on the job report), you can enormously speed up the selection
by adding (let’s assume there are 157 files):

FileIndex=1-157

Count=157

Finally, if you know the logical file number where the Job starts, you can also cause bextract to forward
space to the right file without reading every record:

VolFile=20

There is nothing magic or complicated about a .bsr file. Parsing it and properly applying it within *is*
close to magic, but you don’t need to worry about that.

If you want to see a real bsr file, simply fire up the restore command in the console program, select
something, and while the “yes/mod/no” menus is shown, have a look at the .bsr file reported with the
menu prompt. Eventually, you can copy that file and, in bconsole, answer “no” to the prompt.

22 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

	Disaster Recovery
	Disaster Recovery Preparation
	Storage Considerations
	Mirroring Data between Data Centers
	Disaster Recovery Plan
	Bacula Installation Disaster Recovery Plan
	Bacula Configuration and Backups Disaster Recovery Plan
	Example

	Standard Recovery Solution
	System Recovery Preparation
	General GNU/Linux System Recovery
	GNU/Linux Bare Metal Recovery
	Windows Bare Metal Recovery
	Bacula Configuration Recovery
	Director Recovery
	Storage Daemon Recovery
	Catalog Recovery
	Using Warm Standby or Log Shipping
	Using Catalog Backup

	High Availability
	Solution Comparison
	High Availability Clustering Solution
	Proposed Architecture
	Cluster Resources
	Bacula Configuration Synchronization
	PostgreSQL Catalog
	Data Replication

	Bootstrap File
	Bootstrap File Format
	Automatic Generation of Bootstrap Files
	Bootstrap for bscan
	Final Bootstrap Example

