
Bacula Enterprise User Interfaces:
Console
Bacula Systems Documentation

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 1

Contents

1 Console Installation 2
1.1 Console Configuration . 2
1.2 Console Management . 2

Contents

To allow interaction from administrators or users, Bacula uses Consoles. The Bacula Console is a pro-
gram that allows the user or the System Administrator to interact with the Bacula Director Daemon while
the daemon is running. Note that, even when managing storage or checking client status, the Console
interacts with the Director only, which in turn contacts the other daemons as needed.

Since the Console program interacts with the Director through the network, the Console and Director
programs do not necessarily need to run on the same machine. In fact, in an installation containing
a single tape drive, a certain minimal knowledge of the Console program may be needed in order for
Bacula to be able to write on more than one Volume, because when Bacula requests a new one, it waits
until the user, via the Console program, indicates that the new Volume is mounted or labeled to be used.

1 Console Installation

The Console is installed by default with the Director or the File Daemon installation.

The Console can be installed also on its own with the package named bacula-enterprise-console.

1.1 Console Configuration

When the Console starts, it reads a standard Bacula configuration file named bconsole.conf or bat.conf
in the case of the BAT QT Console version from the current directory unless you specify the -c command
line option (see below). This file allows default configuration of the Console, and at the current time,
the only Resource Record defined is the Director, which gives the Console the name and address of the
Director.

1.2 Console Management

Running the Console Program

Plese type sudo -u bacula /opt/bacula/bin/bconsole in order to run the console.

The Bacula Console program can be run with the following options:

Usage: bconsole [-s] [-c config—file] [-d debug—level]
-D <dir> select a Director
-l list Directors defined
-L list Consoles defined
-C <cons> select a console

(continues on next page)

2 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

-c <file> set configuration file to file
-d <nn> set debug level to <nn>
-dt print timestamp in debug output
-n no conio
-s no signals
-u <nn> set command execution timeout to <nn> seconds
-t test - read configuration and exit
-? print this message.

After launching the Console program (bconsole), it will prompt you for the next command with an
asterisk (*). Generally, for all commands, you can simply enter the command name and the Console
program will prompt you for the necessary arguments. Alternatively, in most cases, you may enter the
command followed by arguments. The general format is:

<command> <keyword1>[=<argument1>] <keyword2>[=<argument2>] ...

where command is one of the commands listed below; keyword is one of the keywords listed below
(usually followed by an argument); and argument is the value. The command may be abbreviated to
the shortest unique form. If two commands have the same starting letters, the one that will be selected is
the one that appears first in the help listing. If you want the second command, simply spell out the full
command. None of the keywords following the command may be abbreviated.

For example:

list files jobid=23

will list all files saved for JobId 23. Or:

show pools

will display all the Pool resource records.

An abbreviated command would be similar to

s dir

which will show the overall status of the Director currently connected to.

In many cases, bconsole will provide tab completion of commands, options names and arguments. Also,
command line history and editing may be available.

Depending on how the program is built, the regular readline key bindings will be used. If the readline
functionality is used, and not the alternative Bacula native one, the full functionality of readline, includ-
ing command history and configuration through the ~/.inputrc file, is available. We recommend to look
at the available configuration as provided by the operating system distribution.

Tab completion is a particularly useful tool, but depends on availability of information that is gathered
from the Director at run time, using some dot commands behind the scenes. Thus, it depends on the
availability of the commands needed, which may be restricted in some cases. Please see Special dot
Commands for more details.

Command line completion can simplify interactive activity a lot:

~$ bconsole -c .config/bacula.org/k8s-bconsole.conf
Connecting to Director am-d11-director-12-8-3-tst.supportlab.lan:9101
1000 OK: 10002 am-d11-director-12-8-3-tst-dir Version: 12.8.3 (28 September␣

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 3

(continued from previous page)

→˓2021)
Enter a period to cancel a command.
*st<tab><tab>
statistics status stop
*status cli<tab>ent=<tab>am-u20-k8s-master01-bck-fd<enter>
Connecting to Client am-u20-k8s-master01-bck-fd at am-u20-k8s-master01-bck.
→˓supportlab.lan:9102

am-u20-k8s-master01-bck-fd Version: 12.8.3 (28 September 2021) ...

The maximum command line length is limited to 511 characters, so if you are scripting the console, you
may need to take some care to limit the line length.

Stopping the Console Program

Normally, you simply enter quit or exit and the Console program will terminate. However, it waits
until the Director acknowledges the command. If the Director is already doing a lengthy command (e.g.
prune), it may take some time. If you want to immediately terminate the Console program, enter the
.quit command.

There is currently no way to interrupt a Console command once issued (i.e. Ctrl-C does not work).
However, if you are at a prompt that is asking you to select one of several possibilities and you would like
to abort the command, you can enter a period (.), and in most cases, you will either be returned to the
main command prompt or if appropriate the previous prompt (in the case of nested prompts). In a few
places such as where it is asking for a Volume name, the period will be taken to be the Volume name. In
that case, you will most likely be able to cancel at the next prompt.

Alphabetic List of Console Keywords

Unless otherwise specified, each of the following keywords takes an argument, which is specified after
the keyword following an equal sign. For example:

jobid=536

all
Permitted on the status and show commands to specify all components or resources respectively.
Takes no argument.

frompool
Permitted on the update volume command to specify that the volume specified on the command
line should be updated with pool parameters.

allfrompool=<pool>
Permitted on the update command to specify that all Volumes in the pool (specified on the com-
mand line) should be updated.

fromallpools
Permitted on the update command to specify that all Volumes in all pools should be updated.

before
Used in the restore command.

bootstrap
Used in the restore command.

4 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

catalog
Allowed in the use command to specify the catalog name to be used.

catalogs
Used in the show command. Takes no arguments.

client | fd

clients
Used in the show, list, and llist commands. Takes no arguments.

counters
Used in the show command. Takes no arguments.

current
Used in the restore command. Takes no argument.

days
Used to define the number of days the list nextvol command should consider when looking for
jobs to be run. The days keyword can also be used on the status dir command so that it will
display jobs scheduled for the number of days you want.

devices
Used in the show command. Takes no arguments.

dir | director

directors
Used in the show command. Takes no arguments.

directory
Used in the restore command. Its argument specifies the directory to be restored.

enabled
This keyword can appear on the update volume as well as the update slots commands, and can
allows one of the following arguments: yes, true, no, false, archived, 0, 1, 2. Where 0 corresponds
to no or false, 1 corresponds to yes or true, and 2 corresponds to archived. Archived volumes
will not be used, nor will the Media record in the catalog be pruned. Volumes that are not enabled,
will not be used for backup or restore.

done
Used in the restore command. Takes no argument.

file
Used in the restore command.

files
Used in the list and llist commands. Takes no arguments.

fileset

filesets
Used in the show command. Takes no arguments.

help
Used in the show command. Takes no arguments.

jobs
Used in the show, list and llist commands. Takes no arguments.

jobmedia
Used in the list and llist commands. Takes no arguments.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 5

jobtotals
Used in the list and llist commands. Takes no arguments.

jobid
The JobId is the numeric jobid that is printed in the Job Report output. It is the index of the
database record for the given job. While it is unique for all the existing Job records in the catalog
database, the same JobId can be reused once a Job is removed from the catalog. Probably you will
refer specific Jobs that ran using their numeric JobId.

job | jobname
The job or jobname keyword refers to the name you specified in the Job, and hence it refers to
any number of Jobs that ran. It is typically useful if you want to list all jobs of a particular name.

level

listing
Permitted on the estimate command. Takes no argument.

limit

messages
Used in the show command. Takes no arguments.

media
Used in the list and llist commands. Takes no arguments.

name
Used in the list object commands. Can specify an Object name.

nextvol | nextvolume
Used in the list and llist commands. Takes no arguments.

noautoparent
Used with the restore command. Takes no arguments.

object
Used in the list commands. Takes no arguments.

objectid
Used in the list and restore commands. Takes an ObjectId as argument.

order
Used in the list to sort records. Can take “ASC” or “DESC” as argument.

on
Takes no keyword.

off
Takes no keyword.

pool

pools
Used in the show, list, and llist commands. Takes no arguments.

select
Used in the restore command. Takes no argument.

limit
Used in the setbandwidth command. Takes integer in KB/s unit.

storages
Used in the show command. Takes no arguments.

6 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

schedules
Used in the show command. Takes no arguments.

sd | store | storage

tag
Used in the list command. Takes no arguments.

ujobid
The ujobid is a unique job identification that is printed in the Job Report output. At the current
time, it consists of the Job name (from the Name for the job) appended with the date and time the
job was run. This keyword is useful if you want to completely identify the Job instance run.

volume

volumes
Used in the list and llist commands. Takes no arguments.

where
Used in the restore command.

yes
Used in the restore command. Takes no argument.

Alphabetic List of Console Commands

The following commands are currently implemented:

add [pool=<pool-name> storage=<storage> jobid=<JobId>]
This command is used to add Volumes to an existing Pool. That is, it creates the Volume name
in the catalog and inserts into the Pool in the catalog, but does not attempt to access the physical
Volume. Once added, Bacula expects that Volume to exist and to be labeled. This command is
not normally used since Bacula will automatically do the equivalent when Volumes are labeled.
However, there may be times when you have removed a Volume from the catalog and want to later
add it back.

Normally, the label command is used rather than this command because the label command labels
the physical media (tape, disk, DVD, . . .) and does the equivalent of the add command. The add
command affects only the Catalog and not the physical media (data on Volumes). The physical
media must exist and be labeled before use (usually with the label command). This command
can, however, be useful if you wish to add a number of Volumes to the Pool that will be physically
labeled at a later time. It can also be useful if you are importing a tape from another site. Please
see the label command below for the list of legal characters in a Volume name.

autodisplay on/of
This command accepts on or off as an argument, and turns auto-display of messages on or off
respectively. The default for the console program is off, which means that you will be notified
when there are console messages pending, but they will not automatically be displayed.

When autodisplay is turned off, you must explicitly retrieve the messages with the messages com-
mand. When autodisplay is turned on, the messages will be displayed on the console as they are
received.

automount on/of
This command accepts on or off as the argument, and turns auto-mounting of the Volume after a
label command on or off respectively. The default is on. If automount is turned off, you must
explicitly mount tape Volumes after a label command to use it.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 7

cancel [jobid=<number> job=<job-name> ujobid=<unique-jobid>] | [inactive
client=<client-name> storage=<storage-name>]

This command is used to cancel a job and accepts jobid=nnn or job=xxx as an argument where
nnn is replaced by the JobId and xxx is replaced by the job name. If you do not specify a keyword,
the Console program will prompt you with the names of all the active jobs allowing you to choose
one.

Once a Job is marked to be canceled, it may take a bit of time (generally within a minute but up to
two hours) before the Job actually terminates, depending on what operations it is doing. Don’t be
surprised that you receive a Job not found message. That just means that one of the three daemons
had already canceled the job. Messages numbered in the 1000’s are from the Director, 2000’s are
from the File daemon and 3000’s from the Storage daemon.

If the Job is still active on the Storage Daemon and/or the File Daemon, but not on the Director, it
is possible to stop the Job with the inactive option of the cancel command.

cloud [storage=<sd-name> volume=<vol-name> allpools allfrompool pool=<p-name>
mediatype=<type-name> drive=<num> slots=<num>] [truncate | prune | list | upload]

The cloud bconsole command allows you to do a number of things with cloud volumes.

The truncate option of the cloud command will attempt to truncate the local cache for the specified
Volume.

The prune option of the cloud command will attempt to prune the local cache for the specified
Volume. Bacula will respect the CacheRetention volume attribute to determine if the cache can
be truncated or not. Only parts that are uploaded to the cloud will be deleted from the cache.

The upload option of the cloud command will attempt to upload the specified Volumes.

The list option of the cloud command will list volumes stored in the Cloud. If a volume name is
specified, the command will list all parts for the given volume.

create [pool=<pool-name>]
This command is not normally used as the Pool records are automatically created by the Director
when it starts based on what it finds in the conf file. If needed, this command can be to create a
Pool record in the database using the Pool record defined in the Director’s configuration file. So
in a sense, this command simply transfers the information from the Pool in the configuration file
into the Catalog. Normally this command is done automatically for you when the Director starts
providing the Pool is referenced within a Job. If you use this command on an existing Pool, it will
automatically update the Catalog to have the same information as the Pool. After creating a Pool,
you will most likely use the label command to label one or more volumes and add their names to
the Media database.

When starting a Job, if Bacula determines that there is no Pool record in the database, but there
is a Pool of the appropriate name, it will create it for you. If you want the Pool record to appear in
the database immediately, simply use this command to force it to be created.

dedup
This command is used to manage Global Deduplication Engine.

[storage=<storage-name> vacuum [forceoptimize] [holepunching] [check-
miss] [checkindex] usage scrub [run | stop | suspend | resume |
status] [worker=<nn>] [reset] tune indexmemory bnum_min=<nn>
bnum_max=<nn> mlock_strategy=<nn> mlock_max=<nn> hole_size=<nn>
rehydra_check_hash=<nn> scrub_bwlimit=<nn> qindex [[:NN:] [:XXXXXXXX]
[:X{32}] [0xXX] [all]] qchunk [[size] [check-hash] [:NN:] [0xXX] [all]] qextent [
[:NN:] [0xXX] all] qcontainer]

delete [volume=<vol-name> pool=<pool-name> job jobid=<id> object [objectid=id]]
The delete command is used to delete a Volume, Pool , Object, Snapshot or Client record from

8 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

the Catalog as well as all associated catalog Volume records that were created. This command
operates only on the Catalog database and has no effect on the actual data written to a Volume.
This command can be dangerous and we strongly recommend that you do not use it unless you
know what you are doing.

If the keyword Volume appears on the command line, the named Volume will be deleted from the Cat-
alog, if the keyword Pool appears on the command line, a Pool will be deleted, if the keyword Object
appears on the command line, an Object and all of its associated records (File) will be deleted from the
catalog, and if the keyword Job appears on the command line, a Job and all of its associated records
(File and JobMedia) will be deleted from the catalog. The full form of this command is:

delete pool=<pool-name>

or

delete volume=<volume-name> pool=<pool-name>

or

delete JobId=<job-id> JobId=<job-id2> ...

or

delete JobId=n,m,o-r,t ...

or

delete client=<client-name>

or

delete snapshot

or

delete object [objectid=id [all]] [category=obj_cat] [type=obj_type]␣
→˓[name=obj_name] [uuid=obj_uuid] [source=obj_source]

The first form deletes a Pool record from the catalog database. The second form deletes a Volume record
from the specified pool in the Catalog database. The third form deletes the specified record from the
catalog database. The fourth form deletes records for JobIds n, m, o, p, q, r and t. Where each one of
the n,m,. . . is, of course, a number. That is a delete jobid accepts lists and ranges of jobids.

The deletion of a Client record will prune all Job records associated with the Client. This command is
possible only once the Client resource of the given name is no longer defined in the Director configuration
file.

The deletion of a Snapshot record can be done with the sixth command.

The deletion of an Object records can be done with the last command. Different filters can be used along
with ’delete object’ command: category, type, name, uuid or source. Passing specific object id can be
also used as a filter to delete many objects at once. Following command will delete all objects records
with the same category, type, name, uuid and source as object with given id.

delete object objectid=1 all

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 9

disable job<job-name>
This command permits you to disable a for automatic scheduling. The job may have been previ-
ously enabled with the Job Enabled or using the console enable command. The next time the
Director is restarted, the Enable/Disable state will be set to the value in the Job (default enabled)
as defined in the bacula-dir.conf file.

disable jobs all
This command permits you to disable all Jobs for automatic scheduling. The next time the Director
is restarted, the Enable/Disable state will be set to the value in the Job resource (default enabled)
as defined in the bacula-dir.conf file.

enable job<job-name>
This command permits you to enable a for automatic scheduling. The job may have been previously
disabled with the Job resource Enabled or using the console disable command. The next time the
Director is restarted, the Enable/Disable state will be set to the value in the Job (default enabled)
as defined in the bacula-dir.conf file.

enable jobs all
This command permits you to enable all Jobs for automatic scheduling. It does not enable jobs
which have Disabled directive. The next time the Director is restarted, the Enable/Disable state
will be set to the value in the Job (default enabled) as defined in the bacula-dir.conf file.

estimate
Using this command, you can get an idea how many files will be backed up, or if you are un-
sure about your Include statements in your Fileset, you can test them without doing an actual
backup. The default is to assume a Full backup. However, you can override this by specifying a
level=Incremental or level=Differential on the command line. A name must be specified or you
will be prompted for one, and optionally a Client and Fileset may be specified on the command
line. It then contacts the client which computes the number of files and bytes that would be backed
up. Please note that this is an estimate calculated from the number of blocks in the file rather than
by reading the actual bytes. As such, the estimated backup size will generally be larger than an
actual backup.

The estimate command can use the accurate code to detect changes and give a better estimation.
You can set the accurate behavior on command line using accurate=yes/no or use the setting as
default value.

Optionally you may specify the keyword listing in which case, all the files to be backed up will be
listed. Note, it could take quite some time to display them if the backup is large. The full form is:

estimate job=<job-name> listing client=<client-name> accurate=<yes/no>␣
→˓fileset=<fileset-name> level=<level-name>

Specification of the job is sufficient, but you can also override the client, fileset, accurate and/or
level by specifying them on the estimate command line.

As an example, you might do:

@tall /tmp/listing
estimate job=NightlySave listing level=Incremental
@tall

which will do a full listing of all files to be backed up for the Job NightlySave during an Incremental
save and put it in the file /tmp/listing. Note, the byte estimate provided by this command is based
on the file size contained in the directory item. This can give wildly incorrect estimates of the
actual storage used if there are sparse files on your systems. Sparse files are often found on 64
bit systems for certain system files. The size that is returned is the size Bacula will backup if the

10 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

sparse option is not specified in the Fileset. There is currently no way to get an estimate of the real
file size that would be found should the sparse option be enabled.

exit
This command terminates the Console program.

gui
Invoke the non-interactive gui mode.

gui [on|off]

help
This command displays the list of commands available.

label
This command is used to label physical volumes. The full form of this command is:

label storage=<storage-name> volume=<volume-name>
slot=<slot>

If you leave out any part, you will be prompted for it. The media type is automatically taken from
the Storage definition that you supply. Once the necessary information is obtained, the Console
program contacts the specified daemon and requests that the Volume be labeled. If the Volume
labeling is successful, the Console program will create a Volume record in the appropriate Pool.

The Volume name is restricted to letters, numbers, and the special characters hyphen (-), under-
score (_), colon (:), and period (.). All other characters including a space are invalid. This restric-
tion is to ensure good readability of Volume names to reduce operator errors.

Please note, when labeling a blank tape, Bacula will get read I/O error when it attempts to ensure
that the tape is not already labeled. If you wish to avoid getting these messages, please write an
EOF mark on your tape before attempting to label it:

mt rewind
mt weof

The label command can fail for a number of reasons:

1. The Volume name you specify is already in the Volume database.

2. The daemon has a tape or other Volume already mounted on the device, in which case you
must unmount the device, insert a blank tape, then do the label command.

3. The Volume in the device is already a Bacula labeled Volume. (Bacula will never relabel a
Bacula labeled Volume unless it is recycled and you use the relabel command).

4. There is no Volume in the drive.

There are two ways to relabel a volume that already has a Bacula label. The brute force method is
to write an end of file mark on the tape using the system mt program, something like the following:

mt -f /dev/st0 rewind
mt -f /dev/st0 weof

For a disk volume, you would manually delete the Volume.

Then you use the label command to add a new label. However, this could leave traces of the old
volume in the catalog.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 11

The preferable method to relabel a Volume is to first purge the volume, either automatically, or
explicitly with the purge command, then use the relabel command described below.

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after
another by using the label barcodes command. For each tape in the changer containing a barcode,
Bacula will mount the tape and then label it with the same name as the barcode. An appropriate
Media record will also be created in the catalog. Any barcode that begins with the same characters
as specified on the “ Cleanprefix = xxx “ directive in the Director’s Pool resource, will be treated
as a cleaning tape, and will not be labeled. However, an entry for the cleaning tape will be created
in the catalog. For example with:

Pool {
Name ...
Cleaning Prefix = "CLN"

}

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be
mounted. Note, the full form of the command is:

label storage=xxx pool=yyy slots=1-5,10 barcodes

list
The list command lists the requested contents of the Catalog. The various fields of each record
are listed on a single line. To see the complete list of options, use the help list command. The
various forms of the list command are:

list events

list jobs

list jobid=<id> (list jobid id)

list jobs joberrors (list jobs with errors)

list jobs jobstatus=f (list jobs with jobstatus f)

list jobs limit=10 order=desc (list the last 10 jobs)

list jobs limit=10 order=asc (list the first 10 jobs)

list jobs client=xxx (list jobs for client xxx)

list copies (list copy jobs)

list ujobid=<unique job name> (list job with unique name)

list job=<job-name> (list all jobs with "job-name")

list jobname=<job-name> (same as above)

In the above, you can add "limit=nn" to limit the output to nn jobs.

list joblog jobid=<id> (list job output if recorded in the catalog)

(continues on next page)

12 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

list jobmedia

list jobmedia jobid=<id>

list jobmedia job=<job-name>

list fileevents jobid=<xx> (list errors associated with a specific␣
→˓JobId)

list files jobid=<id>

list files job=<job-name>

In the above, you can add type=<all|deleted> to see all file records␣
→˓or only deleted records.

list files type=<deleted|all> jobid=<id>

list pools

list clients

list jobtotals

list metadata type=email from=<str> cc=<str> subject=<str> client=<cli>␣
→˓limit=<nb>

list metadata type=attachment id=<str>

list objects (list plugin objects)

list objects jobid=<id>

list object client=<client> (list plugin objects of specified client)

list object type=<type> (list plugin objects of specified type)

list objects category=<category> (list plugin objects of specified␣
→˓category)

list objects limit=10 order=desc (list the last 10 objects)

list objects limit=10 order=asc (list the first 10 objects)

list volumes

list volumes jobid=<id>

list volumes pool=<pool-name>

list volumes job=<job-name>

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 13

(continued from previous page)

list volume=<volume-name>

list nextvolume job=<job-name>

list nextvol job=<job-name>

list nextvol job=<job-name> days=nnn

What most of the above commands do should be more or less obvious. In general if you do not
specify all the command line arguments, the command will prompt you for what is needed.

The list nextvol command will print the Volume name to be used by the specified job. You should
be aware that exactly what Volume will be used depends on a lot of factors including the time and
what a prior job will do. It may fill a tape that is not full when you issue this command. As a
consequence, this command will give you a good estimate of what Volume will be used but not a
definitive answer. In addition, this command may have certain side effect because it runs through
the same algorithm as a job, which means it may automatically purge or recycle a Volume. By
default, the job specified must run within the next two days or no volume will be found. You can,
however, use the days=nnn specification to specify up to 50 days. For example, if on Friday, you
want to see what Volume will be needed on Monday, for job MyJob, you would use list nextvol
job=MyJob days=3.

If you wish to add specialized commands that list the contents of the catalog, you can do so by
adding them to the query.sql file. However, this takes some knowledge of programming SQL.
Please see the query command below for additional information. See below for listing the full
contents of a catalog record with the llist command.

As an example, the command list pools might produce the following output:

+------+---------+---------+---------+----------+-------------+
| PoId | Name | NumVols | MaxVols | PoolType | LabelFormat |
+------+---------+---------+---------+----------+-------------+
| 1 | Default | 0 | 0 | Backup | * |
| 2 | Recycle | 0 | 8 | Backup | File |
+------+---------+---------+---------+----------+-------------+

As mentioned above, the list command lists what is in the database. Some things are put into the
database immediately when Bacula starts up, but in general, most things are put in only when they
are first used, which is the case for a Client as with Job records, etc.

Bacula should create a client record in the database the first time you run a job for that client.
Doing a status will not cause a database record to be created. The client database record will be
created whether or not the job fails, but it must at least start. When the Client is actually contacted,
additional info from the client will be added to the client record (a uname -a output).

If you want to see what Client resource you have available in your conf file, you use the Console
command show clients.

llist
The llist or “long list” command takes all the same arguments that the list command described
above does. The difference is that the llist command list the full contents of each database record
selected. It does so by listing the various fields of the record vertically, with one field per line. It
is possible to produce a very large number of output lines with this command.

If instead of the list pools as in the example above, you enter llist pools you might get the following
output:

14 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

PoolId: 1
Name: Default
NumVols: 0
MaxVols: 0
UseOnce: 0
UseCatalog: 1
AcceptAnyVolume: 1
VolRetention: 1,296,000
VolUseDuration: 86,400
MaxVolJobs: 0
MaxVolBytes: 0
AutoPrune: 0
Recycle: 1
PoolType: Backup
LabelFormat: *

PoolId: 2
Name: Recycle
NumVols: 0
MaxVols: 8
UseOnce: 0
UseCatalog: 1
AcceptAnyVolume: 1
VolRetention: 3,600
VolUseDuration: 3,600
MaxVolJobs: 1
MaxVolBytes: 0
AutoPrune: 0
Recycle: 1
PoolType: Backup
LabelFormat: File

messages
This command causes any pending console messages to be immediately displayed.

memory
Print current memory usage.

mount
The mount command is used to get Bacula to read a volume on a physical device. It is a way to tell
Bacula that you have mounted a tape and that Bacula should examine the tape. This command is
normally used only after there was no Volume in a drive and Bacula requests you to mount a new
Volume or when you have specifically unmounted a Volume with the unmount console command,
which causes Bacula to close the drive. If you have an autoloader, the mount command will not
cause Bacula to operate the autoloader unless you specify a slot and possibly a drive. The various
forms of the mount command are:

mount storage=<storage-name> [slot=<num>] [drive=<num>]

mount [jobid=<id> | job=<job-name>]

If you have specified Automatic Mount = yes in the Storage daemon’s Device, under most cir-
cumstances, Bacula will automatically access the Volume unless you have explicitly unmounted
it in the Console program.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 15

prune
The prune command allows you to safely remove expired Jobs, Files and Statistics database
records from the Catalog. This command works only on the Catalog database and does not af-
fect data written to Volumes. In all cases, the prune command adheres to retention times of the
specified records. You can prune expired File entries, Job records or statistics from the database.
Additionally, when you prune volumes, you prune both expired Job and File records from Volumes,
once all the records pertinent to the volume have been pruned, the volume status will change to
Purged.

prune files|stats client=<client-name> [yes]

prune jobs (all|client=<client-name>) [yes]

prune volume(=<volume-name>| allfrompool (pool=<pool-name>|allpools))␣
→˓[yes]

prune all

For a Volume to be pruned, the VolStatus must be Full, Used, or Append, otherwise the pruning
will not take place.

When pruning Jobs With the all keyword, all combinations of Client/Pool present in the Job table
will be pruned. prune jobs all yes

purge
The purge command will delete associated Catalog database records from Jobs and Volumes with-
out considering the retention period. purge works only on the Catalog database and does not affect
data written to Volumes. This command can be dangerous because you can delete catalog records
associated with current backups of files, and we recommend that you do not use it unless you know
what you are doing. The permitted forms of purge are:

purge files jobid=<jobid>|job=<job-name>|client=<client-name>

purge jobs client=<client-name> (of all jobs)

purge volume|volume=<vol-name> (of all jobs)

For the purge command to work on Volume Catalog database records the VolStatus must be
Append, Full, Used, or Error.

The actual data written to the Volume will be unaffected by this command unless you are using
the ActionOnPurge=Truncate option on those Media.

To ask Bacula to truncate your Purged volumes, you need to use the following command in
interactive mode or in a RunScript:

* purge volume action=truncate storage=File allpools

or by default, action=all
* purge volume action storage=File pool=Default

This is possible to specify the volume name, the media type, the pool, the storage, etc. . . (see help
purge) Be sure that your storage device is idle when you decide to run this command.

query
This command reads a predefined SQL query from the query file (the name and location of the

16 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

query file is defined with the QueryFile record in the Director’s configuration file). You are
prompted to select a query from the file, and possibly enter one or more parameters, then the
command is submitted to the Catalog database SQL engine.

The following queries are currently available (version 2.2.7):

Available queries:
1: List up to 20 places where a File is saved regardless of the directory
2: List where the most recent copies of a file are saved
3: List last 20 Full Backups for a Client
4: List all backups for a Client after a specified time
5: List all backups for a Client
6: List Volume Attributes for a selected Volume
7: List Volumes used by selected JobId
8: List Volumes to Restore All Files
9: List Pool Attributes for a selected Pool
10: List total files/bytes by Job
11: List total files/bytes by Volume
12: List Files for a selected JobId
13: List Jobs stored on a selected MediaId
14: List Jobs stored for a given Volume name
15: List Volumes Bacula thinks are in changer
16: List Volumes likely to need replacement from age or errors
Choose a query (1-16):

quit
This command terminates the console program. The console program sends the quit request to
the Director and waits for acknowledgment. If the Director is busy doing a previous command for
you that has not terminated, it may take some time. You may quit immediately by issuing the .quit
command (i.e. quit preceded by a period).

relabel
This command is used to label physical volumes. The full form of this command is:

relabel storage=<storage-name> oldvolume=<old-volume-name> volume=
→˓<newvolume-name> pool=<pool>

If you leave out any part, you will be prompted for it. In order for the Volume (old-volume-name)
to be relabeled, it must be in the catalog, and the volume status must be marked Purged or Recycle.
This happens automatically as a result of applying retention periods, or you may explicitly purge
the volume using the purge command.

Once the volume is physically relabeled, the old data previously written on the Volume is lost and
cannot be recovered.

release
This command is used to cause the Storage daemon to rewind (release) the current tape in the
drive, and to re-read the Volume label the next time the tape is used.

release storage=<storage-name>

After a release command, the device is still kept open by Bacula (unless Always Open is set to No
in the Storage Daemon’s configuration) so it cannot be used by another program. However, with
some tape drives, the operator can remove the current tape and to insert a different one, and when
the next Job starts, Bacula will know to re-read the tape label to find out what tape is mounted. If

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 17

you want to be able to use the drive with another program (e.g. mt), you must use the unmount
command to cause Bacula to completely release (close) the device.

reload
The reload command causes the Director to re-read its configuration file and apply the new values.
The new values will take effect immediately for all new jobs. However, if you change schedules,
be aware that the scheduler pre-schedules jobs up to two hours in advance, so any changes that are
to take place during the next two hours may be delayed. Jobs that have already been scheduled
to run (i.e. surpassed their requested start time) will continue with the old values. New jobs will
use the new values. Each time you issue a reload command while jobs are running, the old config
values will keptf until all jobs that were running before issuing the reload terminate, at which time
the old config values will be released from memory. As a default a maximum number of 32 reload
requests that can be made, which is generally sufficient. In the case that you make a very large
number of reload requests, you may use the Maximum Reload Requests directive in the Director
resource of bacula-dir.conf to set a larger maximum to that value you wish.

restart
The restart command allows console users to restart a canceled, failed, or incomplete Job. For
canceled and failed Jobs, the Job will restart from the beginning. For incomplete Jobs the Job will
restart at the point that it was stopped either by a stop command or by some recoverable failure.

The restart command, when entered in bconsole in this plain way, will create the following
prompt:

*restart
You have the following choices:

1: Incomplete
2: Canceled
3: Failed
4: All

Select termination code: (1-4):

If you select the All option, you may see something like:

Select termination code: (1-4): 4

Table 1: bVerbatim

jo-
bid

name starttime type level job-
files

jobbytes jobsta-
tus

1 Incremen-
tal

2012-03-26
12:15:21

B F 0 0 A

2 Incremen-
tal

2012-03-26
12:18:14

B F 350 4,013,397 I

3 Incremen-
tal

2012-03-26
12:18:30

B F 0 0 A

4 Incremen-
tal

2012-03-26
12:18:38

B F 331 3,548,058 I

Enter the JobId list to select:

Then you may enter one or more JobIds to be restarted, which may take the form of a list of JobIds
separated by commas, and/or JobId ranges such as 1-4, which indicates you want to restart JobIds
1 through 4, inclusive.

18 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

The restart command accepts some parameters to simplify selection of the Job to restart, and to
modify the behaviour of the restarted Job instance.

To Filter, you can use

• the keywords failed, canceled or incomplete

• the option client=<name>

• the option job=<name>

Note: The restart command has limitations with plugins, as it initiates the Job from scratch rather
than continuing it. Bacula determines whether a Job is restarted or continued, but using the restart
command will result in a new Job.

resume
The resume command does exactly the same thing as a restart command, but for some users the
name may be more logical because in general the restart command is used to resume running a
Job that was incomplete.

restore
The restore command allows you to select one or more Jobs (JobIds) to be restored using various
methods. Once the JobIds are selected, the File records for those Jobs are placed in an internal
Bacula directory tree, and the restore enters a file selection mode that allows you to interactively
walk up and down the file tree selecting individual files to be restored.

restore storage=<storage-name> client=<backup-client-name> where=<path>
pool=<pool-name> fileset=<fileset-name> comment=<comment-specification>
restoreclient=<restore-client-name> objectid=<id> restorejob=<job-name>
jobuser=<user-name> jobgroup=<group-name>
noautoparent select current all done

Where current, if specified, tells the restore command to automatically select a restore to the
most current backup. If not specified, you will be prompted. The all specification tells the restore
command to restore all files. If it is not specified, you will be prompted for the files to restore.

The client keyword initially specifies the client from which the backup was made and the client
to which the restore will be make. However, if the restoreclient keyword is specified, then the
restore is written to that client.

The comment keyword can be used to store information related to the job in the catalog, like who
has requested the job. It can have up to 4096 characters and cannot use the following characters :
‘ < > & \ “

The noautoparent keyword advises the restore preparation to not automatically select directory
entries leading up to the explicitly marked files for restoration. Normally, such entries are selected
and restored to ensure that proper permissions are recreated. However, in some cases this may not
be needed or desirable, and thus, the functionality can be disabled here. Directories will still be
created, but they will receive the default permissons; on Unix / Linux hosts, this is usually resulting
in them being owned by root and having permissions set as defined by system defaults and umask
modifier. This keyword is available as of Bacula Enterprise version 8.10.

The restore Job rarely needs to be specified, as bacula installations commonly only have a single
restore job configured. However, for certain cases, such as a varying list of RunScript specifica-
tions, multiple restore jobs may be configured. The restorejob argument allows the selection of
one of these jobs.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 19

run
This command allows you to schedule jobs to be run immediately. The full form of the command
is:

run job=<job-name> client=<client-name>
fileset=<Fileset-name> level=<level-keyword>
storage=<storage-name> where=<directory-prefix> comment=<comment-

→˓specification>
when=<universal-time-specification> spooldata=yes|no yes

The comment keyword can be used to store information related to the job in the catalog, like who
has requested the job. It can have up to 4096 characters and cannot use the following characters :
‘ < > & \ “

Any information that is needed but not specified will be listed for selection, and before starting the
job, you will be prompted to accept, reject, or modify the parameters of the job to be run, unless
you have specified yes, in which case the job will be immediately sent to the scheduler.

On my system, when I enter a run command, I get the following prompt:

A job name must be specified.
The defined Job resources are:
1: Matou
2: Polymatou
3: Rufus
4: Minimatou
5: Minou
6: PmatouVerify
7: MatouVerify
8: RufusVerify
9: Watchdog

Select Job resource (1-9):

If I then select number 5, I am prompted with:

Run Backup job
JobName: Minou
Fileset: Minou Full Set
Level: Incremental
Client: Minou
Storage: DLTDrive
Pool: Default
When: 2003-04-23 17:08:18
OK to run? (yes/mod/no):

If I now enter yes, the Job will be run. If I enter mod, I will be presented with the following
prompt:

Parameters to modify:
1: Level
2: Storage
3: Job
4: Fileset
5: Client
6: When

(continues on next page)

20 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

7: Pool
Select parameter to modify (1-7):

If you wish to start a job at a later time, you can do so by setting the When time. Use the mod
option and select When (no. 6). Then enter the desired start time in YYYY-MM-DD HH:MM:SS
format.

The spooldata argument of the run command cannot be modified through the menu and is only
accessible by setting its value on the intial command line. If no spooldata flag is set, the job,
storage or schedule flag is used.

setbandwidth
This command is used to limit the bandwidth of a running job or a client.

setbandwidth limit=<nb> [jobid=<id> | client=<cli>]

The limit can be provided as a plain number, which would then mean the number of bytes per
second, or a multiplier from among (case-insensitive) k/s (1,024), kb/s (1,000), m/s (1,048,576)
or mb/s (1,000,000) can be appended.

This bandwidth control is applied to data transfers from File Daemon to Storage Daemon, and it
may not result in as smooth a network bandwidth usage as traffic shaping at the network layer, but
it requires no external facilities.

setdebug
This command is used to set the debug level in each daemon. The form of this command is:

setdebug level=nn [trace=0/1 client=<client-name> | dir | director |
storage=<storage-name> | all | options=0cidtTlp | tags=<tags>]

If trace=1 is set, then tracing will be enabled, and the daemon will be placed in trace mode, which
means that all debug output as set by the debug level will be directed to the file bacula.trace in
the current directory of the daemon. Normally, tracing is needed only for Win32 clients where
the debug output cannot be written to a terminal or redirected to a file. When tracing, each debug
output message is appended to the trace file. You must explicitly delete the file when you are done.

If options parameter is set, the following arguments can be used to control debug functions.

0 clear debug flags

i Turn off, ignore bwrite() errors on restore on File Daemon

d Turn off decomp of BackupRead() streams on File Daemon

t Turn on timestamp in traces

T Turn off timestamp in traces

c Truncate trace file if trace file is activated

I Turn on recoding events on P() and V()

p Turn on the display of the event ring when doing a lockdump

It is now possible to use class of debug messages called tags to control the debug output of Bacula
daemons.

all Display all debug messages

bvfs Display BVFS debug messages

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 21

sql Display SQL related debug messages

memory Display memory and poolmem allocation messages

scheduler Display scheduler related debug messages

* setdebug level=10 tags=bvfs,sql,memory
* setdebug level=10 tags=!bvfs

The tags option is composed of a list of tags, tags are separated by “,” or “+” or “-” or “!”. To
disable a specific tag, use “-” or “!” in front of the tag.

setip
Sets new client address — if authorized.

A console is authorized to use the SetIP command only if it has a Console definition in both the
Director and the Console. In addition, if the console name, provided on the Name, must be the
same as a Client name, the user of that console is permitted to use the SetIP command to change the
Address in the Director’s Client resource to the IP address of the Console. This permits portables
or other machines using DHCP (non-fixed IP addresses) to “notify” the Director of their current
IP address.

show
The show command will list the records as defined in the Director’s configuration file (normally
bacula-dir.conf). This command is used mainly for debugging purposes by developers. The
following keywords are accepted on the show command line: catalogs, clients, counters, devices,
directors filesets, jobs, messages, pools, schedules, storages, all, help. Please don’t confuse this
command with the list, which displays the contents of the catalog.

sqlquery
The sqlquery command puts the Console program into SQL query mode where each line you
enter is concatenated to the previous line until a semicolon (;) is seen. The semicolon terminates
the command, which is then passed directly to the SQL database engine. When the output from
the SQL engine is displayed, the formation of a new SQL command begins. To terminate SQL
query mode and return to the Console command prompt, you enter a period (.) in column 1.

Using this command, you can query the SQL catalog database directly. Note you should really
know what you are doing otherwise you could damage the catalog database. See the query com-
mand above for simpler and safer way of entering SQL queries.

Depending on what database engine you are using (MySQL or PostgreSQL), you will have some-
what different SQL commands available. For more detailed information, please refer to the
MySQL, PostgreSQL documentation.

status
This command will display the status of all components. For the director, it will display the next
jobs that are scheduled during the next 24 hours as well as the status of currently running jobs.
For the Storage Daemon, you will have drive status or autochanger content. The File Daemon will
give you information about current jobs like average speed or file accounting. The full form of this
command is:

status [all | dir=<dir-name> | director [days=nnn] |
schedule [client=<client-name> | job=<job-name>] [days=nnn | limit=nnn]
client=<client-name> | [slots] storage=<storage-name>] | network [bytes=
→˓<nb>]

If you do a status dir, the console will list any currently running jobs, a summary of all jobs
scheduled to be run in the next 24 hours, and a listing of the last ten terminated jobs with their

22 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

statuses. The scheduled jobs summary will include the Volume name to be used. You should be
aware of two things: 1. to obtain the volume name, the code goes through the same code that will
be used when the job runs, but it does not do pruning nor recycling of Volumes; 2. The Volume
listed is at best a guess. The Volume actually used may be different because of the time difference
(more durations may expire when the job runs) and another job could completely fill the Volume
requiring a new one.

In the Running Jobs listing, you may find the following types of information:

2507 Catalog MatouVerify.2004-03-13—05.05.02 is waiting execution
5349 Full CatalogBackup.2004-03-13—01.10.00 is waiting for higher␣
→˓priority jobs to finish
5348 Differe Minou.2004-03-13—01.05.09 is waiting on max Storage jobs
5343 Full Rufus.2004-03-13—01.05.04 is running

Looking at the above listing from bottom to top, obviously JobId 5343 (Rufus) is running. JobId
5348 (Minou) is waiting for JobId 5343 to finish because it is using the Storage resource, hence
the “waiting on max Storage jobs”. JobId 5349 has a lower priority than all the other jobs so it is
waiting for higher priority jobs to finish, and finally, JobId 2507 (MatouVerify) is waiting because
only one job can run at a time, hence it is simply “waiting execution”

If you do a status dir, it will by default list the first occurrence of all jobs that are scheduled
today and tomorrow. If you wish to see the jobs that are scheduled in the next three days (e.g. on
Friday you want to see the first occurrence of what tapes are scheduled to be used on Friday, the
weekend, and Monday), you can add the days=3 option. Note, a days=0 shows the first occurrence
of jobs scheduled today only. If you have multiple run statements, the first occurrence of each run
statement for the job will be displayed for the period specified.

If your job seems to be blocked, you can get a general idea of the problem by doing a status dir,
but you can most often get a much more specific indication of the problem looking into the File
and Storage Daemon status.

The status schedule provides more insight into the scheduler’s world view. It will present a list of
scheduled jobs, starting with the current day, and including past jobs of the current day.

By default, the Jobs for 10 days will be presented. Also, by default, the output will be limited to
100 items. Using the days and limit named options, which each take a numerical value, the output
can be shortened. The client and job keywords take Client and Job names, respectively, and can
be used to filter the Jobs to list. As of Bacula Enterprise 8.10 these keywords can appear multiple
times, but that filters of the same type will be or’ed together, whereas Client and Job filters would
both have to match. In other words, as each Job runs by definition on exactly one Client, combining
client and job filters is pointless.

An example:

status schedule client=vanyar-fd client=GolgiApparat-fd limit=8

Scheduled Jobs (30/8):
Level Type Pri Scheduled Job Name ␣
→˓Schedule
===
Incremental Backup 10 Tue 23-May 22:05 vanyar-psql ␣
→˓DailyPG
Incremental Backup 10 Tue 23-May 23:05 GolgiApparat-all Daily
Incremental Backup 10 Tue 23-May 23:05 vanyar-all ␣
→˓DailyLC

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 23

(continued from previous page)

Incremental Backup 10 Wed 24-May 22:05 vanyar-psql ␣
→˓DailyPG
Incremental Backup 10 Wed 24-May 23:05 GolgiApparat-all Daily
Incremental Backup 10 Wed 24-May 23:05 vanyar-all ␣
→˓DailyLC
Incremental Backup 10 Thu 25-May 22:05 vanyar-psql ␣
→˓DailyPG
Incremental Backup 10 Thu 25-May 23:05 GolgiApparat-all Daily
====

If you enter status storage, Bacula will prompt you with a list of the storage resources. When you
select one, the Storage daemon will be requested to do a status. However, note that the Storage
daemon will do a status of all the devices it has, and not just of the one you requested. In the current
version of Bacula, when you enter the status storage command, it prompts you only with a subset
of all the storage resources that the Director considers to be in different Storage daemons. In other
words, it attempts to remove duplicate storage definitions. This can be a bit confusing at first, but
can vastly simplify the promt listing if you have defined a large number of storage resources.

If you prefer to see the full list of all storage resources, simply add the keyword select to the com-
mand such as: status select storage and you will get a prompt that includes all storage resources
even if they reference the same storage daemon.

If you enter status network, Bacula will prompt you with a list of the storage resources and a list
of the client resources. Then, Bacula will test the network throughput between the two selected
daemons.

*status network
The defined Client resources are:
1: zog82-fd
2: zog8-fd

Select Client (File daemon) resource (1-2): 2
Automatically selected Storage: File1
Connecting to Storage File1 at zog8:8103
Connecting to Client zog8-fd at zog8:8102
Running network test between Client=zog8-fd and Storage=File1 with 52.42␣
→˓MB ...
2000 OK bytes=52428800 duration=48ms write—speed=1.088 GB/s 2000 OK␣
→˓bytes=52428800 duration=56ms read—speed=933.8 MB/s

stop
The stop command is very similar to the cancel command with the main difference that the Job
that is stopped is marked as Incomplete so that it can be restarted later by the restart command
where it left off.

The JobId of the job to be stopped can be passed as a named parameter, such as stop
jobid=12345.

The stop command with no arguments will prompt you with the list of running jobs allowing you
to select one, which might look like the following:

*stop
Select Job:

1: JobId=3 Job=Incremental.2012-03-26_12.04.26_07
2: JobId=4 Job=Incremental.2012-03-26_12.04.30_08

(continues on next page)

24 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

3: JobId=5 Job=Incremental.2012-03-26_12.04.36_09
Choose Job to stop (1-3): 2
2001 Job "Incremental.2012-03-26_12.04.30_08" marked to be stopped.
3000 JobId=4 Job="Incremental.2012-03-26_12.04.30_08" marked to be stopped.

tag
The tag command will add, delete or list the tags associated with catalog records such as Clients,
Jobs, Volumes or Objects. The command accepts all parameters in command line.

*tag add name="#test1" client=zog8-fd
1000 Tag added

*tag
Available Tag operations:
1: Add
2: Delete
3: List

Select Tag operation (1-3): 1
Available Tag target:
1: Client
2: Job
3: Volume

Select Tag target (1-3): 1
Automatically selected Client: zog8-fd
Enter the Tag value: test1
1000 Tag added
*tag
Available Tag operations:
1: Add
2: Delete
3: List

Select Tag operation (1-3): 3
Available Tag target:
1: Client
2: Job
3: Volume

Select Tag target (1-3): 1
Automatically selected Client: zog8-fd
+--------+----------+---------+
| tag | clientid | client |
+--------+----------+---------+
| test1 | 1 | zog8-fd |
| #test1 | 1 | zog8-fd |
+--------+----------+---------+

time
Prints the current time.

trace
Turn on/off trace to file.

umount
For old-time Unix guys. See the unmount command for full details.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 25

unmount
This command causes the indicated Bacula Storage daemon to unmount the specified device. The
forms of the command are the same as the mount command:

unmount storage=<storage-name> [drive=<num>]

unmount [jobid=<id> | job=<job-name>]

Once you unmount a storage device, Bacula will no longer be able to use it until you issue a
mount command for that device. If Bacula needs to access that device, it will block and issue
mount requests periodically to the operator.

If the device you are unmounting is an autochanger, it will unload the drive you have specified on
the command line. If no drive is specified, it will assume drive 1.

update
This command will update the catalog for either a specific Pool record, a Volume record, or the
Slots in an autochanger with barcode capability. In the case of updating a Pool record, the new
information will be automatically taken from the corresponding Director’s configuration resource
record. It can be used to increase the maximum number of volumes permitted or to set a maximum
number of volumes. The following main keywords may be specified: media, volume, pool, slots,
stats, jobid.

In the case of updating a Job record, you can modify the starttime, the client and the prune
attributes. starttime and client can be modified when doing a migration from an other backup
software to Bacula for example. The prune attribute of the Job record is checked when trying to
purge job or prune files from the catalog. If the prune Job’s catalog attribute is 1 (Job record) or 2
(Files record), Bacula will not be able to purge the job record (or the file records) and recycle the
associated volumes.

In the case of updating a Volume, you will be prompted for which value you wish to change. The
following Volume parameters may be changed:

Volume Status
Volume Retention Period
Volume Use Duration
Maximum Volume Jobs
Maximum Volume Files
Maximum Volume Bytes
Recycle Flag
Recycle Pool
Slot
InChanger Flag
Pool
Volume Files
Volume from Pool
All Volumes from
Pool All Volumes from all Pools

For slots update slots, Bacula will obtain a list of slots and their barcodes from the Storage dae-
mon, and for each barcode found, it will automatically update the slot in the catalog Media record
to correspond to the new value. This is very useful if you have moved cassettes in the magazine,
or if you have removed the magazine and inserted a different one. As the slot of each Volume is
updated, the InChanger flag for that Volume will also be set, and any other Volumes in the Pool
that were last mounted on the same Storage device will have their InChanger flag turned off. This
permits Bacula to know what magazine (tape holder) is currently in the autochanger.

26 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

If you do not have barcodes, you can accomplish the same thing in version 1.33 and later by using
the update slots scan command. The scan keyword tells Bacula to physically mount each tape
and to read its VolumeName.

For Pool update pool, Bacula will move the Volume record from its existing pool to the pool
specified.

For Volume from Pool, All Volumes from Pool and All Volumes from all Pools, the follow-
ing values are updated from the Pool record: Recycle, RecyclePool, VolRetention, VolUseDura-
tion, MaxVolJobs, MaxVolFiles, and MaxVolBytes. (RecyclePool feature is available with Bacula
2.1.4 or higher.)

The full form of the update command with all command line arguments is:

update volume=xxx pool=yyy slots volstatus=xxx VolRetention=ddd
VolUse=ddd MaxVolJobs=nnn MaxVolBytes=nnn Recycle=yes|no slot=nnn
enabled=n recyclepool=zzz actiononpurge=xxx

update volume=xxx frompool

update volume allfrompool=xxx

update volume fromallpools

use
This command allows you to specify which Catalog database to use. Normally, you will be using
only one database so this will be done automatically. In the case that you are using more than one
database, you can use this command to switch from one to another.

use [catalog=name-of-catalog]

var
This command takes a string or quoted string and does variable expansion on it the same way
variable expansion is done on the LabelFormat string. Thus, for the most part, you can test
your LabelFormat strings. The difference between the var command and the actual LabelFormat
process is that during the var command, no job is running so “dummy” values are used in place of
Job specific variables. Generally, however, you will get a good idea of what is going to happen in
the real case.

version
The command prints the Director’s version.

wait
The wait command causes the Director to pause until there are no jobs running. This command
is useful in a batch situation such as regression testing where you wish to start a job and wait until
that job completes before continuing. This command now has the following options:

wait [jobid=nn] [jobuid=unique id] [job=job name]

If specified with a specific JobId, the wait command will wait for that particular job to terminate
before continuing.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 27

Special dot Commands

There is a list of commands that are prefixed with a period (.). These commands are intended to be
used either by batch programs or graphical user interface front-ends. They are not normally used by
interactive users. Once GUI development begins, this list will be considerably expanded. More infor-
mation about these commands can be found in src/dird/ua_dotcmds.c of the Bacula Community Project
(www.bacula.org). The following is the list of dot commands:

.api

.backups job=xxx list backups for specified job

.clients list all client names

.catalogs list all catalog defined

.defaults client=xxx fileset=yyy list defaults for specified client

.die cause the Director to segfault (for␣
→˓debugging)
.dir when in tree mode prints the equivalent to␣
→˓the dir

command, but with fields separated by␣
→˓commas rather

than spaces.
.dump
.exit quit
.events list record custom events
.filesets list all fileset names
.help help command output
.jobs list all job names
.estimate estimate the size of the next job
.jlist list catalog objects in JSON format (see␣
→˓list command)
.levels list all levels
.messages get quick messages
.msgs return any queued messages
.pools list all pool names
.quit quit
.putfile upload a PluginRestore object to the␣
→˓director
.schedule list all schedule resources
.sql
.status get status output
.status dir header get header status output
.status dir running get running jobs status output
.status dir scheduled get scheduled jobs status output
.status dir terminated get terminated jobs status output
.storage return storage resource names
.volstatus list all possible volume statuses
.media list all media
.mediatypes list all defined mediatype
.locations
.actiononpurge list all possible values for ActionOnPurge␣
→˓setting
.bvfs_lsdirs list directories in a directory for a␣
→˓given set of jobs
.bvfs_lsfiles list files in a directory for a given set␣

(continues on next page)

28 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

→˓of jobs
.bvfs_get_volumes list volumes needed for a restore
.bvfs_update update the bvfs cache tables
.bvfs_get_jobids get jobids needed to restore a given job
.bvfs_get_jobs get job information
.bvfs_get_bootstrap generate a bootstrap from a bvfs restore
.bvfs_get_fileindex get the fileindex content for a given file
.bvfs_versions get all version of a file
.bvfs_get_delta get all delta parts of a file
.bvfs_restore generate a SQL table with all information␣
→˓needed for a

restore
.bvfs_cleanup cleanup the SQL restore table
.bvfs_decode_lstat decode the LSTAT field
.bvfs_clear_cache clear the BVFS cache of the catalog
.bvfs_update_fv compute extra statistics in the BVFS␣
→˓tables (number of

files and size)
.bvfs_delete_fileid delete a given file
.setuid restrict BVFS queries with UID/GID
.ls list files on a client

.types list job types

.query

.tags list tags

Special At (@) Commands

Normally, all commands entered to the Console program are immediately forwarded to the Director,
which may be on another machine, to be executed. However, there is a small list of at commands, all
beginning with an at character (@), that will not be sent to the Director, but rather interpreted by the
Console program directly. Note, these commands are implemented only in the tty console program and
not in the BAT Console. These commands are:

• @input <filename> Read and execute the commands contained in the file specified.

• @output <filename> w/a Send all following output to the filename specified either overwriting
the file (w) or appending to the file (a). To redirect the output to the terminal, simply enter @output
without a filename specification. WARNING: be careful not to overwrite a valid file. A typical
example during a regression test might be:

@output /dev/null
commands ...
@output

• @tee <filename>w/a Send all subsequent output to both the specified file and the terminal. It is
turned off by specifying @tall, @tee or @output without a filename.

• @tall <filename>w/a Send all subsequent input and output to both the specified file and the ter-
minal. It is turned off by specifying @tall, @tee or @output without a filename.

• @sleep <seconds> Sleep the specified number of seconds.

• @time Print the current time and date.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 29

• @version Print the console’s version.

• @quit quit

• @exit quit

• @# anything Comment

• @help Get the list of all special @ commands.

• @separator <char> When using bconsole with readline, you can set the command separator
to one of those characters to write commands who require multiple input on one line, or to put
multiple commands on a single line.

!$%&'()*+,-/:;<>?[]^`{|}~

Note, if you use a semicolon (;) as a separator character, which is common, you will not be able to
use the sql command, which requires each command to be terminated by a semicolon.

Running the Console from a Shell Script

You can automate many Console tasks by running the console program from a shell script. For example,
if you have created a file containing the following commands:

./bconsole -c ./bconsole.conf <<END_OF_DATA
unmount storage=DDS-4
quit
END_OF_DATA

when that file is executed, it will unmount the current DDS-4 storage device. You might want to run this
command during a Job by using the RunBeforeJob or RunAfterJob records.

It is also possible to run the Console program from file input where the file contains the commands as
follows:

./bconsole -c ./bconsole.conf <filename

where the file named filename contains any set of console commands.

As a real example, the following script is part of the Bacula regression tests. It labels a volume (a disk
volume), runs a backup, then does a restore of the files saved.

bin/bconsole -c bin/bconsole.conf <<END_OF_DATA
@output /dev/null
messages
@output /tmp/log1.out
label volume=TestVolume001
run job=Client1 yes
wait
messages
@#
@# now do a restore
@#
@output /tmp/log2.out
restore current all
yes

(continues on next page)

30 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

wait
messages
@output
quit
END_OF_DATA

The output from the backup is directed to /tmp/log1.out and the output from the restore is directed to
/tmp/log2.out. To ensure that the backup and restore ran correctly, the output files are checked with:

grep "^ *Termination: *Backup OK" /tmp/log1.out
backupstat=$?
grep "^ *Termination: *Restore OK" /tmp/log2.out
restorestat=$?

Adding Volumes to a Pool

If you have used the label command to label a Volume, it will be automatically added to the Pool, and
you will not need to add any media to the pool.

Alternatively, you may choose to add a number of Volumes to the pool without labeling them. At a later
time when the Volume is requested by Bacula you will need to label it.

Before adding a volume, you must know the following information:

1. The name of the Pool (normally “Default”)

2. The Media Type as specified in the Storage in the Director’s configuration file (e.g. “DLT8000”)

3. The number and names of the Volumes you wish to create.

For example, to add media to a Pool, you would issue the following commands to the console program:

*add
Enter name of Pool to add Volumes to: Default
Enter the Media Type: DLT8000
Enter number of Media volumes to create. Max=1000: 10
Enter base volume name: Save
Enter the starting number: 1
10 Volumes created in pool Default
*

To see what you have added, enter:

*list media pool=Default
+-------+----------+---------+---------+-------+------------------+
| MedId | VolumeNa | MediaTyp| VolStat | Bytes | LastWritten |
+-------+----------+---------+---------+-------+------------------+
11	Save0001	DLT8000	Append	0	0000-00-00 00:00
12	Save0002	DLT8000	Append	0	0000-00-00 00:00
13	Save0003	DLT8000	Append	0	0000-00-00 00:00
14	Save0004	DLT8000	Append	0	0000-00-00 00:00
15	Save0005	DLT8000	Append	0	0000-00-00 00:00
16	Save0006	DLT8000	Append	0	0000-00-00 00:00
17	Save0007	DLT8000	Append	0	0000-00-00 00:00

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 31

(continued from previous page)

18	Save0008	DLT8000	Append	0	0000-00-00 00:00
19	Save0009	DLT8000	Append	0	0000-00-00 00:00
20	Save0010	DLT8000	Append	0	0000-00-00 00:00
+-------+----------+---------+---------+-------+------------------+
*

Notice that the console program automatically appended a number to the base Volume name that you
specify (Save in this case). If you don’t want it to append a number, you can simply answer 0 (zero) to
the question “Enter number of Media volumes to create. Max=1000:”, and in this case, it will create a
single Volume with the exact name you specify.

32 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

	Console Installation
	Console Configuration
	Console Management
	Running the Console Program
	Stopping the Console Program
	Alphabetic List of Console Keywords
	Alphabetic List of Console Commands
	Special dot Commands
	Special At (@) Commands
	Running the Console from a Shell Script
	Adding Volumes to a Pool

