
Global Endpoint Deduplication
Bacula Systems Documentation

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 1

Contents

1 Executive Summary 3

2 Deduplication 3
2.1 Advantages of Deduplication . 3
2.2 Cautions About Using Deduplication . 4
2.3 Aligned Volumes . 4
2.4 Global Endpoint Deduplication . 4
2.5 How Bacula Global Endpoint Deduplication Works . 5
2.6 Client Side Rehydration . 7
2.7 Storage Daemon Deduplication Related Directives . 7
2.8 Deduplication Related Director Daemon Fileset Directive . 9
2.9 Deduplication Related File Daemon Directive . 10
2.10 Things to Know About Bacula . 10
2.11 Deduplication Engine Vacuum . 10
2.12 Deduplication Engine Status . 11
2.13 Disaster Recovery . 13

3 Dedupengine 14
3.1 Sizing the Index . 14
3.2 Commands to Tune the Index . 16
3.3 Punching holes in containers . 17
3.4 Quiesce and Unquiesce . 18
3.5 Detect, Report and Repair Dedupengine Inconsistencies . 19

4 Hardware Requirements 24
4.1 CPU . 24
4.2 Memory . 25
4.3 Disks . 25

5 Installation 25
5.1 Linux . 26

6 Restrictions and Limitations 26

7 Best Practices 27
7.1 RAID . 27
7.2 ZFS . 27
7.3 Maximum Container Size . 27
7.4 Vacuum and Scrub . 28
7.5 Holepunching . 29

Contents

• Executive Summary

• Deduplication

• Dedupengine

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 2

• Hardware Requirements

• Installation

• Restrictions and Limitations

• Best Practices

1 Executive Summary

IT organizations are constantly being challenged to deliver high quality solutions with reduced total cost of ownership.
One of those challenges is the growing amount of data to be backed up, together with limited time to run backup jobs
(backup window). Bacula Enterprise offers several ways to tackle these challenges, one of them being Global Endpoint
Deduplication, which minimizes network transfer and Bacula Volume size using deduplication technology.

This document is intended to provide insight into the considerations and processes required to successfully implement
this backup technique.

2 Deduplication

Deduplication is a complex subject. Generally speaking, it detects that data being backed up (usually chunks) has
already been stored and rather than making an additional backup copy of the same data, the deduplication software
keeps a pointer referencing the previously stored data (chunk). Detecting that a chunk has already been stored is done
by computing a hash code (also known as signature or fingerprint) of the chunk, and comparing the hash code with
those of chunks already stored.

The picture becomes much more complicated when one considers where the deduplication is done. It can either be
done on the server and/or on the client machines. In addition, most deduplication is done on a block by block basis, with
some deduplication systems permitting variable length blocks and/or blocks that start at arbitrary boundaries (sliding
blocks), rather than on specific alignments.

2.1 Advantages of Deduplication

• Deduplication can significantly reduce the disk space needed to store your data. In good cases, it may reduce
disk space needed by half, and in the best cases, it may reduce disk space needed by a factor of 10 or 20.

• Deduplication can be combined with compression to further reduce the storage space needed. Compression
depends on data type and deduplication depends on the data usage (on the need or the will of the user to keep
multiple copies or versions of the same or similar data). Bacula takes advantage that both techniques work
perfectly together and combines them in it’s Dedupengine.

• Deduplication can significantly reduce the network bandwidth required because both ends can exchange refer-
ences instead of the actual data itself. It works when the destination already has a copy of the original chunks.

• Handling references instead of the data can speed up most of the processing inside the Storage Daemon. For
example, Bacula features like copy/migrate and Virtual Full can be up to 1,000 times faster. See the following
article for more information on this subject.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 3

2.2 Cautions About Using Deduplication

Here are a few of the things that you should be aware of before using deduplication techniques.

• To do efficient and fast deduplication, the Storage Daemon will need additional CPU power (to compute hash
codes and do compression), as well as additional RAM (for fast hash code lookups). Bacula Systems can help
you to calculate memory needs.

• For effective performance, the deduplication Index should be stored on SSDs as the index will have many random
accesses and many updates.

• Due the extra complexity of deduplication, performance tuning is more complicated.

• We recommend Index and Containers are stored in xfs or ext4 file systems. But we are also compatible with zfs
file system.

• Deduplication collisions can cause data corruption. This is more likely to happen if the deduplicating system
uses a weak hash code such as MD5 or Fletcher. The problem of hash code collisions is mitigated in Bacula by
using a strong hash code (SHA512/256).

• Deduplication is not implemented for tape devices. It works only with disk-based backups.

• The immutable flag is not compatible or does not apply to the dedup index or dedup containers.

2.3 Aligned Volumes

Bacula Systems’ first step in deduplication technology was to take advantage of underlying deduplicating filesystems
by offering an alternative (additional) Volume format that is aligned on specific chunk boundaries. This permits an
underlying file system that does deduplication to efficiently deduplicate the data. This new Bacula Enterprise Dedupli-
cation Optimized Volume format is often called “Aligned” Volume format. Another way of describing this is that we
have filtered out all the metadata and record headers and put them in the Metadata Volume (same as existing Volume
format) and put only file data that can be easily deduplicated into the Aligned Volume.

Since there are a number of deduplicating file systems available on Linux or Unix systems (ZFS, lessfs, ddumbfs,
SDFS (OpenDedup), LiveDFS, ScaleDFS, NetApp (via NFS), Epitome (OpenBSD), Quantum (in their appliance),
etc. This Bacula Aligned Volume implementation allows users to choose the deduplication engine they want to use.
More information about Deduplication Optimized Volume Format can be found in Bacula Systems’ DedupVolumes
whitepaper.

2.4 Global Endpoint Deduplication

Bacula Systems’ first data source agnostic deduplication technology is the Global Endpoint Deduplication feature. With
Global Endpoint Deduplication, Bacula will analyze data at the block level, then Bacula will store only new chunks in
the deduplication engine, and use references in standard Bacula volumes to chunks stored in the deduplication engine.
The deduplication can take place at the File Daemon side (saving network and storage resources), and/or at the Storage
Daemon side (saving storage resources).

The remainder of this white paper will discuss only Global Endpoint Deduplication.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 4

2.5 How Bacula Global Endpoint Deduplication Works

• First, please be aware that you need the dedup-sd.so or the bacula-sd-dedup-driver-x.y.z.so Storage Daemon
plugin for Global Endpoint Deduplication to work. Please do not forget to define the Plugin Directory in the
Storage Daemon configuration file bacula-sd.conf.

• Dedup devices are enabled by specifying the dedup keyword as a DeviceType directive in each disk Device
resource in the bacula-sd.conf where you want to use deduplicated Volumes.

DeviceType = Dedup

• You must pay particular attention to define a unique Media Type for devices that are Dedup as well as for each
Virtual Autochanger that uses a different Archive Device directory. If you use the same Media Type for a Dedup
device type as for a normal disk Volume, you run the risk that you will have data corruption on disk Volumes
that are used on Dedup and non-Dedup devices.

• When Global Endpoint Deduplication is enabled, the Device will fill in disk volumes with chunk references
instead of the chunks. Bacula encrypted data, and very small files will be stored in the Volumes as usual. The
deduplicated chunks are stored in the “Containers” of the Dedupengine, and are shared by all other dedup-aware
devices in the same Storage Daemon.

• We advise to set a limit on the number of Jobs or the usage duration when working with dedup Volumes. In
case you prefer to use Maximum Volume Bytes, please consider that two Catalog fields are considered when
computing the volume size. VolBytes represents the volume size on disk and VolaBytes considers the amount
of non-dedup data stored in the volumes, i.e., the rehydrated data. If the directive Maximum Volume Bytes is
used for a dedup Volume, Bacula will consider both VolBytes and VolaBytes values to check the limits.

Global Endpoint Deduplication During Backup Jobs

Fig. 1: Backup Scenario with bothsides deduplication

• When starting a Backup Job, the Storage Daemon will inform the File Daemon that the Device used for the Job
can accept dedup data.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 5

• If the Fileset uses the dedup = bothsides option, the File Daemon will compute a strong hash code for each
chunk and send references to the Storage Daemon which will request the original chunk from the File Daemon
if the Dedupengine is unable to resolve the reference.

• If the Fileset uses the dedup = storage option, the File Daemon will send data as usual to the Storage Daemon,
and the Storage Daemon will compute hash codes and store chunks in the Dedupengine and the references in the
disk volume.

• If the Fileset uses the dedup = none option, the File Daemon will send data as usual to the Storage Daemon,
and the Storage Daemon will store the chunks in the Volume without performing any deduplication functions.

• If the File Daemon doesn’t support Global Endpoint Deduplication, the deduplication will be done on the Storage
side if the Device is configured with DeviceType = dedup.

Global Endpoint Deduplication During Restore Jobs

Fig. 2: Restore Scenario when usingthe directive ‘Enable Client Rehydration’

• If the directive Enable Client Rehydration is set to “yes” in the File Daemon configuration file, the Storage
Daemon will send references to the File Daemon during a restore. If the directive is set to “no”, the Storage
Daemon will rehydrate all the references and send the chunks to the File Daemon.

• When the File Daemon receives a reference, it will try to rehydrate the data using local data, see section Client
Side Rehydration below.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 6

2.6 Client Side Rehydration

Attention: Client Side Rehydration is deprecated

Client side rehydration is deprecated and should not be used with Bacula versions greater than 12.0.0. If you run
into one of the specific cases described below for which this feature could be very useful, please contact the Support
Team.

The File Daemon can try to do some rehydration on its own using local data. This feature can increase restore speeds
for systems connected through a slow network and doesn’t consume any resources at backup time.

This feature is activated with a FileDaemon resource directive called Enable Client Rehydration in bacula-fd.conf.

We recommend against using this feature on a client connected through a fast network, because the extra disk accesses
and computation can slow down the speed of the restore jobs.

To take advantage of this feature you must understand how it works. At restore time, the client receives the original
location, the offset and the hash of every chunk to restore. It then looks to see if the original file still exists, opens it
and checks if the chunk at the given offset matches the given hash. If it matches, the File Daemon uses it and does not
download the chunk from the Storage Daemon.

It is obvious that to take advantage of this feature, you must:

• Restore the data to another location.

• Have some piece of the original data in the original location.

This feature can be very helpful to retrieve an old version of the current data.

Notice that this feature doesn’t work for files that are not going into the Deduplication Engine like small files or when
data encryption is used. This also doesn’t work when the data is transformed by Bacula before reaching the Dedupli-
cation Engine. For example, when compression is used or when backing up Windows systems without the portable
= yes option in the Fileset.

Unfortunately there is no evidence of the efficiency of the algorithm in the Job report yet. The only evidence is the
read chunk counter shown by the dedup usage command that is not incremented for chunks found on the Client.

2.7 Storage Daemon Deduplication Related Directives

• Plugin Directory = <directory-path>

This directive tells the Storage Daemon where to find plugins. The file dedup-sd.so or the
bacula-sd-dedup-driver-x.y.z.so must be present in this directory before starting the Storage Daemon.

• Dedup Directory = <directory-path>

Deduped chunks will be stored in the Dedup Directory. This directory is common for all Dedup devices
configured on a Storage Daemon and should have a large amount of free space. We advise you to use LVM on
Linux Systems to ensure that you can extend the space in this directory. The Dedup Directory directive is
mandatory. We recommend that you do not change this directory afterward, because if you make a mistake, it
would invalidate all of your backups. If you do change the Dedup Directory directive, the following files
must be moved to the new directory:

– *.blk

• Dedup Index Directory = <directory-path>

Indexes will be stored in the Dedup Index Directory. Indexes will have a lot of random update accesses, and
will benefit from fast drives such as SSD drives. By default, the Dedup Index Directory is set to the Dedup
Directory.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 7

As with the Dedup Directory, we recommend against changing the Dedup Index Directory directive. If you
do, the following files and directories must be moved to the new directory:

– *.idx

– *.tch

– recovery

– recovery.new

The file bee_dde.tch.new is a temporary file used by the optimize part of the vacuum that remain when the
process is interrupted. This file don’t need to be moved.

• Maximum Container Size = <size>

No container will be allowed to grow to more than <size> bytes. When this size is reached, a new container
file will be created. The default value is zero, meaning there is no limit. This limit is useful when you store
your containers on a filesystem that limits the size of the file to a pretty low value.

The number of containers is limited to 511, so we recommend to keep this value unlimited or pretty high, at least
1TB. This value may be modified after the initialization of the DedupEngine. If a container is already bigger
than the new limit, then no new data will be written to it, but its size will not be reduced. Other containers will
comply with the new limit.

• Device Type = Dedup
This directive is required to make the Device write Dedup volumes. Once turned on, Bacula will use references
in Volumes and will store data chunks into specific container files.

Once a Device has been defined with a certain Type (such as Dedup, Aligned, File or Tape), it cannot be changed
to another Type. If you do so, the Bacula Storage Daemon will not be able to properly mount volumes that were
created before the change.

From bacula-sd.conf
Storage {
Name = my-sd
Working Directory = /opt/bacula/working
Pid Directory = /opt/bacula/working
Subsys Directory = /opt/bacula/working

Plugin Directory = /opt/bacula/plugins
Dedup Directory = /mnt/bacula/dedup/containers
Dedup Index Directory = /mnt/SSD/dedup/index # Recommended to be on fast local SSD␣
→˓storage
Maximum Container Size = 4TB # Maximum 511 containers can be created, please adapt to␣
→˓your need
}

Device {
Name = "DedupDisk"
Archive Device = /mnt/bacula/dedup/volumes
Media Type = DedupVolume
Device Type = Dedup # Required
LabelMedia = yes
Random Access = Yes
AutomaticMount = yes
RemovableMedia = no
AlwaysOpen = no

}

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 8

2.8 Deduplication Related Director Daemon Fileset Directive

Within the Director, the Global Endpoint Deduplication system is enabled with a Fileset Option directive called Dedup.
Each Include section can have a different behavior depending on your needs.

Use the default dedup option of 'storage' side deduplication
Fileset {
Name = FS_BASE
Include {
Options {
Dedup = storage

}
File = /opt/bacula/etc

}

Do not dedup my encrypted data
Include {
Options {
Dedup = none

}
File = /encrypted

}

Minimize the network transfer by using 'bothsides' dedup option
Include {
Options {
Dedup = bothsides

}
File = /bigdirectory

}
}

The Dedup Fileset option can have the following values:

• storage - All the deduplication work is done on the Storage Daemon side if the device type is dedup. The File
Daemon will send all data to the SD just as it normally would. (Default value)

• none - Disable dedpulication on both the File Daemon and Storage Daemon.

• bothsides - The deduplication work is done on the File Daemon and the Storage Daemon.

About Fileset Compression

The data stored by the Global Endpoint Deduplication Engine is automatically compressed using the LZ4 algorithm.
Using the Fileset Compression = LZO|GZIP option might reduce the deduplication efficiency, and compressing the
data twice consumes extra CPU cycles on the client side. Thus we advise that you do not use client-side GZIP or LZO
compression when using a Dedup Device. To prevent such an inefficient configuration, we recommend setting the
Allow Compression directive in a Director Storage resource to No:

cat bacula-dir.conf
...
Storage {

Name = Dedup
Allow Compression = No # Disable Fileset Compression

option automatically
Address = baculasd.lan

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 9

(continued from previous page)

Password = xxx
Media Type = DedupMedia
...

}

2.9 Deduplication Related File Daemon Directive

The Enable Client Rehydration FileDaemon directive is optional and allows Bacula to try to do rehydration using
existing local data, see section Client Side Rehydration. The valid values are Yes or No. The default is No.

Starting with 8.2.0, the FileDaemon Dedup Index Directory in bacula-fd.conf directive is deprecated and re-
placed by Enable Client Rehydration directive.

cat /opt/bacula/etc/bacula-fd.conf
FileDaemon {
...

Enable Client Rehydration = yes
}

2.10 Things to Know About Bacula

• You must pay particular attention to define a unique Media Type for devices that are Dedup as well as for each
Virtual Autochanger that uses a different Archive Device directory. If you use the same Media Type for a Dedup
device type as for a normal disk Volume, you run the risk that you will have data corruption on disk Volumes
that are used on Dedup and non-Dedup devices.

• Dedup devices are compatible with Bacula’s Virtual Disk Changers

• We strongly recommend that you not use the Bacula disk-changer script, because it was written only for testing
purposes. Instead of using disk-changer, we recommend using the Virtual Disk Changer feature of Bacula,
for which there is a specific white paper.

• We strongly recommend that you update all File Daemons that are used to write data into Dedup Volumes. It is
not required, but old File Daemons do not support the newer FD to SD protocol, and consequently the Global
Endpoint Deduplication cannot not be done on the FD side.

• The immutable flag is compatible with dedup volumes, see more details in Volume Protection Enhancements
and Volume Protection.

2.11 Deduplication Engine Vacuum

Over time, you will normally delete files from your system, and in doing so, it may happen that there will be chunks
that are stored in dedup containers that are no longer referenced.

In order to reclaim these unused chunks in containers, the administrator needs to schedule a vacuum option of the
dedup command. The vacuum option will analyze dedup volumes and mark any chunks that are not referenced as free,
thus allowing the disk space to be reused. The vacuum command can run while other jobs are running.

* dedup
Dedup Engine choice:

1: Vacuum data files
2: Cancel running vacuum

(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 10

(continued from previous page)

3: Display data files usage
Select action to perform on Dedup Engine (1-3): 1
The defined Storage resources are:

1: File1
2: Dedup

Select Storage resource (1-2): 2
Connecting to Storage daemon Dedup at localhost:9103 ...
3000 Found 1 volumes to scan for MediaType=DedupMedia
Ready to read from volume "Vol1" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/
→˓volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol1"
Ready to read from volume "Vol2" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/
→˓volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol2"
Ready to read from volume "Vol3" on dedup data device "Dedup-Dev1" (/mnt/bacula/dedup/
→˓volumes).
End of Volume at file 0 on device "Dedup-Dev1" (/mnt/bacula/dedup/volumes), Volume "Vol3"
End of all volumes.
Vacuum cleaning up index.
Vacuum done.

2.12 Deduplication Engine Status

Is it possible to query the Deduplication Engine to get some information and statistics. Note that the current interface is
oriented toward developers and is subject to change. For example, the Stats counters can be reset to estimate the work
done by the engine for one job or for one period of time. Here is an example output of the dedup usage command,
followed by an explanation of each section in the output:

* dedup storage=Dedup usage
Dedupengine status:
DDE: hash_count=1275 ref_count=1276 ref_size=78.09 MB

ref_ratio=1.00 size_ratio=1.13 dde_errors=0
Config: bnum=1179641 bmin=33554393 bmax=335544320 mlock_strategy=1

mlocked=9MB mlock_max=0MB
Containers: chunk_allocated=3469 chunk_used=1275

disk_space_allocated=101.2 MB disk_space_used=68.87 MB
containers_errors=0

Vacuum: last_run="06-Nov-14 13:28" duration=1s ref_count=1276
ref_size=78.09 MB vacuum_errors=0 orphan_addr=16

Stats: read_chunk=4285 query_hash=7591 new_hash=3469 calc_hash=3470
[1] filesize=40.88KB/499.6KB usage=36/484/524288 7% ***...............
[2] filesize=40.13KB/589.0KB usage=18/286/524288 6% **5...............
[3] filesize=25.47KB/655.2KB usage=7/212/524288 3% *4................

...
[64] filesize=4.096KB/4.096KB usage=0/0/524288 0%
[65] filesize=53.25MB/63.90MB usage=800/960/524288 83%3***********

DDE:

• hash_count Number of hashes in the Index.

• ref_count Number of references in all the Volumes.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 11

• ref_size The total of all rehydrated references in all the volumes. This is the size that would be needed
if deduplication was not in use.

• ref_ratio The ratio between ref_count and hash_count.

• size_ratio The ratio between ref_size and disk_space_used.

• dde_error The number of invalid data found in the Index.

Config:

• bnum The capacity of the hash table in the Index. This is the number of buckets in the Tokyo Cabinet
hash database.

• bmin The minimum size of the hash table in the Index. Bacula will not go below this value when resizing
the Index.

• bmax The maximum size of the hash table in the Index. Bacula will not go above this value when resizing
the Index. Zero means no limit.

• mlock_strategy This is the strategy to apply to lock only the hash table or the hash table and Index into
memory.

– 0 Do not lock any memory.

– 1 Use at most mlock_max bytes to lock only the hash table of the Index.

– 2 Use at most mlock_max bytes to lock all the Index.

• mlocked The current number of bytes locked by the Index.

• mlock_max The maximum number of bytes that the Index can lock.

Containers:

• chunk_allocated The number of chunks allocated in all containers.

• chunk_used The number of chunks that are really in use.

• disk_space_allocated The space allocated for all containers.

• disk_space_used The space that is really used inside all containers.

• containers_error The number of errors related to the containers.

Vacuum:

• last_run The date of the last vacuum.

• duration The time the vacuum took to complete.

• ref_count Number of references handled by last vacuum.

• ref_size The total rehydrated size of all references handled by last vacuum.

• vacuum_errors Number of various errors reported during last vacuum. You can get more information in
the trace file.

• orphan_addr Number of distinct addresses found in the volumes but not found in the Index during the last
vacuum. These appear when the Storage Daemon crashes, because the DedupEngine is cleaned up but not
the volumes.

Stats:

• read_chunk How many chunks have been read since the last reset.

• query_hash Number of chunk index queries since the last reset.

• new_hash How many new entries in the chunk index since the last reset.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 12

• calc_hash How many hashes have been calculated since the last reset.

In the DDE section, both ratios give a different view of what is happening inside the dedup engine. While ref_ratio
gives a true value, ref_size tell us how effective the dedup engine is, because we are more concerned about the space
saved. The last one takes into account the LZ4 compression and also any possible disparity between small and big
chunks. For example, if there are a lot of small chunks with a high dedup ratio, ref_ratio will be high, but the space
saved will be small as it concerns only small blocks.

ref_count and ref_size are calculated during a vacuum and are used to reset the counter with the same names in
section DDE. These two counters are then updated by future backups.

Example:

[7] 7k filesize=4.1GB/22.3GB usage=569910/3104523/3145728 \
18% 670030000000000000000000..........684**9

• [7] is the ID of the container. This is the number at the end of the container file which resides in the Dedup
Directory defined in bacula-sd.conf. In this case, “bee_dde0007.blk”

• 7k is the size limit for the chunks inside this container.

• 4.1GB/22.3GB means that the container size (as shown with ’ls -l’) is 22.3GB, but only 4.1GB are used in this
container. This means that 18.2GB (22.3GB - 4.1GB) can be written into this container without making it grow.
Notice that ’ls -l’ doesn’t accurately represent the size of a container file when ’holepunching’ is used because
some of this space can be unallocated (think ’sparse file’). “ls -s”, “stat” and “du” can display the size that is
really used by the container. A command like this gives the size in bytes:

$ echo $((`stat -c "%b*%B" bee_dde0007.blk`))

• usage=569910/3104523/3145728. The 2 first values are the same as 4.1GB and 22.3GB but are expressed in
number of chunks. The third value is the the size of the bit array holding the map of the container. This array
grows in increments of 64k = 524288 bits every time the current array gets full.

• 18% is the usage of the container, here 18%=569910/3104523

• 670030000000000000000000..........684**9 is the map of the container sliced in 40 parts. A “.” means
that the part is empty. “0” means that less 10% of the part is used, and “9” means that the part is used between
90% and 99%. Finally “*” means that the part is fully used.

2.13 Disaster Recovery

Catalog

The Catalog doesn’t contain any reference to the deduplication engine. However, the dedup volumes’ records in the
Catalog are used during the vacuum process. For this reason, you must make sure to have the Catalog properly restored
before starting a dedup vacuum process.

Volumes

If a dedup Volume is in the Catalog but not on disk, a dedup vacuum process will stop and report an error.

Index

The Index is essential for the deduplication engine. In the case of a disaster, contact Bacula Systems Support Team.

Free Space Map (FSM)

The deduplication engine creates a copy (during a commit) of the FSM after every important operation in the recovery
sub-directory. When the deduplication engine is not shut down properly, the last copy is used as a reference by the
recovery procedure to remove any operations that started after the time of the last commit and that could be incomplete.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 13

When the original and the copy of the FSM are lost, it is still possible to rebuild the FSM using references found in
volumes. See section Detect, Report and Repair Dedupengine Inconsistencies.

Containers

Containers hold chunks of data. When a container (or part of a container) file is lost, the data is lost and it is not recover-
able by Bacula. Use the deduplication engine recovery tools (Detect, Report and Repair Dedupengine Inconsistencies)
to identify chunks of data that are lost and restore the deduplication engine consistency.

3 Dedupengine

The deduplication engine is the heart of Bacula’s Global Endpoint Deduplication. It has to store, to index and to retrieve
the chunks. All chunks are stored in the Container Area and registered in the Index. The Index is the bottleneck
of the deduplication process because all operations need to access it randomly, and very quickly. Memory caching and
storing the Index on SSD drives will help to maintain good performance.

The Deduplication Index maintains all the hashes of all chunks stored in the Dedup Containers. To get effective per-
formance very fast low latency storage is critical. For large back up data it is best to have the Containers and Dedu-
plication Index on the same hardware server with the Deduplication Index on solid-state drives (SSDs). The faster the
disk performance, the faster and more efficient the deduplication process and the data protection will be. In production
environments it is best to avoid configurations which introduce latency and delays in the storage infrastructure for the
Deduplication Index. It is therefore best to avoid spinning disks, remote access configurations like NFS or CIFS and
virtualized SDs. These can be acceptable for small containers (1-2TB) or to perform tests but will normally not provide
acceptable performance in larger production environments.

3.1 Sizing the Index

The size of the index depends on the number of chunks that you want to store in the deduplication engine. An upper
limit would be 1 chunk per file plus 1 chunk per 64K block of data.

number_of_chunks = number_of_files +
data_amount

64K

If all you have is the storage capacity of your Storage Daemon and want to maximize it, you must know the average
compressed size of the chunks you expect to store in Containers. If you don’t know the size, you may use 16K.

number_of_chunks =
storage_capacity

16K

When you know the number of chunks, you can calculate the size of your index.

index_size = 1.3 * number_of_chunk * (8 + 70)

The index can be split into two parts: the table and the records.

index_size = table_size + record_size

table_size = 1.3 * number_of_chunk * 8

record_size = 1.3 * number_of_chunk * 70

The table part is small and is accessed by all operations. The record part is bigger and is sometimes not used for read
operations.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 14

Table 1: Samples of Index size for chosen Storage sizes

Storage size Index size Table part Record part
1 TB 6.3 GB 0.65 GB 5.7 GB
10 TB 63.3 GB 6.5 GB 56.9 GB

For good performance, you must try to lock the entire Index into memory, if this is not possible due to lack of memory
resources, keeping at least the hash table in memory is highly recommended.

But these are not the only requirements. Bacula needs some extra space on disk and in memory to optimize and resize
the Index. We recommend the following:

• Be sure to have 3 times the index_size on an SSD drive for the Index.

• Try to have index_size+table_size of RAM for the Index.

• At least be sure to have 2 times the “table_size” of RAM for the Index.

Setting up the Index size

The Index is based on a hash table that by design has a fixed size. A B-Tree structure is used to handle collisions in the
hash table. The size of the table is important. If too small, the table will have to handle overflow that will slowdown
the Index. If too big, the table will consume space and memory uselessly. The table can be resized online and Bacula
takes advantage of the vacuum procedure to optimize the table size when needed. Creating the table at the right size
from the start will ensure good performance from the beginning and avoid a reduction in performance. The user can
define the minimum and maximum sizes of the table. At the end of the vacuum, if the amount of data to delete is large,
or if the size of the table is unbalanced regarding the amount of remaining data, Bacula resizes the table to a size equal
to 1.3 time the number of hashes remaining in the Index. This new size will be adjusted to match the minimum and
maximum values chosen by the user.

𝑏𝑛𝑢𝑚_𝑚𝑖𝑛 < 𝑡𝑎𝑏𝑙𝑒_𝑠𝑖𝑧𝑒 * 1.3 < 𝑏𝑛𝑢𝑚_𝑚𝑎𝑥

The default values for bnum_min is 33,554,432 and 0 for bnum_max, meaning that their is no limit. These numbers
are the number of chunks that the Index can handle efficiently. A chunk can have a size between 1K to 64K. 16K is a
good mean value. This means that the default index range is well suited for a storage space between 1TB and 10TB.

Keep in mind that the size of the index affects the amount of memory required to lock the index in memory.

Locking the index into memory

The operating system caches data that is used often in memory. Unfortunately the huge amount of data going in and out
of the Storage Daemon usually wipes out the Index data from the system cache. The alternative is to force the system
to map and lock some parts of the Index into memory.

The user has a choice between 3 strategies:

• 0 nothing is locked into memory

• 1 try to lock the table part of the Index into memory

• 2 try to lock the entire Index into memory

Bacula will not allocate more than the maximum value defined by the user (mlock_max) and will check the amount of
memory available to not overload the system.

See how to change these variables in section Commands to Tune the Index.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 15

3.2 Commands to Tune the Index

Bacula Enterprise 8.2 added 4 new parameters to tune the Index. These parameters are initialized with default values
when the Dedupengine is created or when Bacula upgrades the Dedupengine from an older version. These parameters
may be modified at any time. They will be saved inside the Dedupengine and will be used during the next vacuum.

The Dedupengine can be tuned by changing some internal variables. To have a good understanding of how the dedu-
plication engine works, be sure to read sections Sizing the Index and Commands to Tune the Index.

• bnum_min The minimum capacity of the hash table in the Index. Bacula will not go below this value when
resizing the Index.

• bnum_max The maximum capacity of the hash table in the Index. Bacula will not go above this value when
resizing the Index. Zero means no limit.

• mlock_strategy This is the strategy to lock the Index into memory. You have the choice between 3 strategies:

– 0 Do not lock any memory.

– 1 Use at most mlock_max bytes to lock only the hash table of the Index into memory. (the default)

– 2 Use at most mlock_max bytes to lock all the Index into memory.

• mlock_max The maximum amount of bytes that may be used to lock the Index into memory. Zero means no
limit. (the default)

Each of these variables may be modified using the dedup command together with the name of the variable. The
previous value is displayed for reference.

*dedup storage=Dedup bnum_min=33554393
3000 dedupsetvar bnum_min previous value was 33554393
*dedup storage=Dedup bnum_max=33554393
3000 dedupsetvar bnum_max previous value was 0
*dedup storage=Dedup mlock_strategy=1
3000 dedupsetvar mlock_strategy previous value was 1ff
*dedup storage=Dedup mlock_max=4096MB
3000 dedupsetvar mlock_max previous value was 0

You can review all of these values at once using the dedup usage command. At the top of the output you have the
section Config::

* dedup storage=Dedup usage
Dedupengine status:
...
Config: bnum=1179641 bmin=33554393 bmax=33554393 mlock_strategy=1

mlocked=9MB mlock_max=0MB
...

See the section Deduplication Engine Status for an explanation of the other variables.

These values will be used during the next vacuum if the Index needs to be optimized. You can force an optimize by
adding the option forceoptimize to the the dedup vacuum command.

* dedup storage=Dedup vacuum forceoptimize

To force the Dedupengine to use a new mlock value without running a dedup vacuum, you may use the dedup tune
indexmemory command.

* dedup storage=Dedup tune indexmemory

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 16

3.3 Punching holes in containers

Some Linux filesystems like XFS and EXT4 have the ability to punch a hole into files.

A portion of the file can be marked as unwanted and the associated storage released. Of course when a process writes
into such a hole, the filesystem allocates space to this area.

Because the use of this technique can increase fragmentation of the filesystem and contribute to slower performance, it
is recommended to avoid it when not needed, even though Bacula does its best to use it in a way that will not significantly
impact performance.

The hole punching can happen in two places in the DDE:

1. detect and release large unused areas in containers,

2. prevent the allocation of chunks in these holes and prefer areas that are too small to be converted into holes.

Both of these processes are independent. As soon as you set up a hole_size, the DDE tries to allocate space outside
of areas that are good candidates for hole creation, even if no holes have been created before.

Theory: creating holes

Because these holes can be reused by any container or file on the filesystem, this approach contributes to its fragmen-
tation. That is why you must keep the size of these holes large enough to not reduce the performance of the filesystem.
It as been shown that reading or writing random blocks of 4MB is done at a speed similar to sequential reads or writes.
That is why we recommend setting the hole_size to 4MB. Smaller values can increase the work for the filesystem
to manage all these small holes, reduce the performance, and make filesystem recovery processes (fsck) take longer.
Using a higher value would reduce the probability to find such an unused amount of space inside the containers.

The DDE doesn’t store the holes that it has created and doesn’t use the information stored in the filesystem itself. The
DDE creates the holes on top of the previous ones, and the filesystem ignores the requests for areas that are already
holes.

The holes are aligned on the hole_size boundaries that we call extents. Remember that containers handle chunks of
different sizes, and their sizes are not necessarily powers of 2, so they can span extents. Spanning chunks have weird
consequences on the holes:

1. A single used chunk spanning two extents will prevent the conversion of these 2 extents into holes.

2. A hole that has free spanning chunks at one or both ends holds more space than the space that has been given
back to the filesystem.

Theory: smart allocating in between holes

As previously stated, if an unused area is big enough, only the part that is aligned on the hole_size boundaries will
be converted into a hole. This allows some space around these holes that is still allocated by the filesystem and can
be used without “consuming” any new space. The DDE will chose to allocate new chunks in these spaces first, even if
these areas have not been converted into holes yet because the DDE relies on existing free space and not on holes that
have been created in the past.

When all space between holes has been allocated, the system goes back to the sequential allocation strategy and uses
space in existing holes and finally allocates space at the end of the file.

Commands to create and manage holes

Add the holepunching option to the vacuum command to create the holes at the end of the vacuum procedure. The
command in bconsole is:

* dedup vacuum holepunching storage=<DeviceName>

The first time you use the holepunching option, the DDE sets the hole size to 4194304 (4MB). The size is stored in the
hole_size variable and can be modified or initialized before the first use. The option forceoptimize can be used

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 17

together with the holepunching option without restriction. The time required to identify and create holes should not
require more than 10s per TB.

You can change the hole_size to any value that is a power of 2 bigger than 1 MB. There is no upper limit, but values
above 32MB are probably excessive. To change the hole_size, use the command:

* dedup storage=<DeviceName> hole_size=<Size_in_Byte>

For example you can chose a smaller value with the aim of releasing more space.

*dedup storage=Dedup hole_size=1048576
3000 dedupsetvar hole_size previous value was 4194304

This new value will be used the next time the vacuum is run with the holepunching option. However, this value will be
immediately used by the allocation process to avoid using free space that could be released by the next holepunching
procedure.

You can disable smart allocation by setting the value to zero. Notice that this value will set the default value to 4MB
the next time you use the holepunching option in the vacuum command.

*dedup storage=Dedup hole_size=0
3000 dedupsetvar hole_size previous value was 4194304

You can review this value using the dedup usage command. At the top of the output you have the section Hole::

* dedup storage=Dedup usage
Dedupengine status:
...
HolePunching: hole_size=1024 KB
...

3.4 Quiesce and Unquiesce

It is possible to quiesce the dedupengine to safely copy its data without shutting down the DDE. The commands
quiesce and unquiesce allow to freeze and unfreeze the DDE.

* dedup storage=Dedup quiesce
3900 quiesce successful
* dedup storage=Dedup unquiesce
3900 unquiesce successful

Note: This functionality is available as of version 10.2.

When the quiesce command is run, all running backups and restores are suspended. If a scrub is running, it is
paused. If a vacuum is running, the quiesce waits for the end of the vacuum before returning. When the DDE is frozen,
you can backup or copy all the data related to the DDE. The data are in a crash-consistent state, this means that after a
recovery, the data will be consistent. When the unquiesce command is run, all the backups and restores resume from
the point where they had previously stopped. A scrub continues from where it was interrupted.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 18

3.5 Detect, Report and Repair Dedupengine Inconsistencies

The dedup vacuum command provides three options: checkindex, checkmiss and checkvolume to detect, report
and possibly repair inconsistencies in the DDE. checkindex can be used with the two others. When checkmiss and
checkvolume are used together, checkmiss is ignored.

The checkindex and checkvolume options use a temporary file chunkdb.tch that stores the hash for every suspi-
cious chunk to save multiple computations.

The three options will log information to the trace file.

checkindex option of the vacuum command

The option checkindex checks the consistency of the Index with itself and the coherence between the Index and the
FSM. When multiple entries in the Index address the same chunk in one container (an address collision), the procedure
reads the chunk, calculates the hash and deletes all invalid entries from the index. This procedure is executed before
reading the volumes, and it iterates through the index twice: Once to detect collisions, and one more time to delete all
invalid entries.

The checkindex option displays some statistics in the trace file:

cleanup_index_addr_duplicate unset2miss=0
cleanup index Phase 1 cnt=703783 badaddr=0 suspect=0 unset=0 2miss=0 miss=0

(count=703784 err=0 2miss_err_cnt=0)
cleanup index Phase 2 cnt=703783 2miss=0 (count=703784 err=0 2miss_err=0)

• cnt: the number of data entries in the Index.

• badaddr: the number of entries in the Index with a fanciful address that don’t match any container or any chunk
inside a container.

• suspect: the number of colliding addresses that must be checked.

• unset: the number of addresses that were unexpectedly marked as free in the FSM and that have been temporary
marked as used until the vacuum determines if the entry is needed or not.

• 2miss: the number of new missing entries.

• miss: the number of entries that are missing, meaning that there is no matching chunk in the containers. This
includes the newly created entries.

• count: the number of entries including the meta data (cnt + 1)

• err: a counter for uncommon errors.

• 2miss_err: the number of errors when creating or converting an erroneous entry into a missing one.

A Scrub process always starts a checkindex as its final action.

checkmiss and checkvolume options of the vacuum command

The option checkvolume is deprecated since the availability of the Scrub process. In future releases the checkvolume
option will be silently replaced by the option checkmiss.

These options search the Index for every reference found in the volumes. This can significantly increase the time of the
vacuum if the Index doesn’t fit into memory. Be sure to check that using the command dedup storage=Dedup tune
indexmemory.

The option checkmiss simply creates dummy entries when a reference in not found in the Index. This entry indicates
that the chunk is missing and could be resolved by future backups or by a Scrub. This option is less resource intensive
than the checkvolume because it doesn’t access the containers.

The option checkvolume checks the consistency of the Index with every reference found in the volumes. If the hash of
the reference is not found in the Index or doesn’t match the address, then the chunks at the given addresses are read, the

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 19

hashes are calculated and the Index is fixed when appropriate. Incorrect entries are converted into missing to indicate
that some chunks are missing. This option no longer uses the file orphanaddr.bin. This file is now deleted after a
successful vacuum.

Every mismatch is logged in the checkvolume trace file with the coordinate of the file that holds the reference. Only one
line is logged per file and per type of mismatch, others are counted in the statistics. Tools that can use this information
to exclude the faulty file during a restore (for example) will come later.

The lines in the trace file look like this:

bacula-sd: dedupengine.c:4151 VacuumBadRef FixedIndex FI=1 SessId=1
SessTime=1479138666 : ref(#55fd99e7 addr=0x0016000000000001 size=22254)
idx_addr=0x0038000000000001

Every related line holds the keyword “VacuumBadRef” followed by one second keyword, see below for the details:

• RefTooSmall: The record in the volume that holds the reference is too small to hold a reference and is then
unusable and not processed further.

• BadAddr: The address in the reference looks fanciful and is ignored. The record in the volume may be corrupted.

• FixedIndex: One reference has been verified and used to fix the Index. Maybe the Index had no entry for the
hash of this reference or had a different address.

• OrphanRef: The hash related to this reference doesn’t match the related chunk or the one given by the Index if
any. This reference is an orphan. The file that holds this reference cannot be fully recovered.

• RecoverableRef: The hash related to this reference doesn’t match the related chunk, but the Index has a dif-
ferent address that does match the chunk. Then the file can be restored using “dedup storage=XXXXX rehy-
dra_check_hash=1” during the time of the restore. The address is written in file orphanaddr.bin

The other fields on the line depend on the type:

• FI, SessId and SessTime are the coordinates of the file as written in the Catalog.

• fields inside ref() are related to the reference.

At the end, Bacula displays some statistics in the trace file:

Vacuum: idxfix=0 2miss=0 orphan=0 recoverable=0
Vacuum: idxupd_err=0 chunk_read=0 chunk_read_err=0 chunkdb_err=0

• idxfix: The number of entries fixed in the Index. See FixedIndex above.

• orphan: The number of orphan chunks. See OrphanRef above.

• recoverable: The number of recoverable chunks. See RecoverableRef above.

• idxfix_err: The number of errors while trying to fix the entries.

• chunk_read: The number of chunks that have been read from disk to verify the hash.

• chunk_read_err: The number of errors while reading the chunks.

• chunkdb_err: The number of errors while updating the cache that stores the hashes of the block that have been
read.

The last three counters are also updated by the “checkindex” option.

Self Healing

It is possible to enable an option to store all chunks of data to the Deduplication Engine even if the chunks are already
stored.

dedup storage=Dedup self_healing=1

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 20

Container Scrubbing

The Scrub process reads every chunk in every container and compares them with the Index. If an inconsistency is
found, the Index is corrected automatically.

Since the container files can be very large, the Scrub process can take days to read everything within them. Bacula
jobs (backup, restore, verify, migration, copy, . . .) can run while the Scrub process is running. A vacuum process
automatically pauses the Scrub process for the duration of the vacuum.

It is recommended to run the Scrub on a regular basis. To minimize the impact of the Scrub process during your backup
window, it is possible to control the speed or suspend and resume the process with a bconsole command. This may be
done manually, or scripted as part of a cron job:

$ cat /etc/cron.d/bacula-scrub
BCONS=/opt/bacula/bin/bconsole
LOG=/opt/bacula/working/scrub.log

#M H DOM M DOW USER CMD
01 18 * * * bacula echo "dedup scrub suspend storage=Dedup" | $BCONS > $LOG
01 8 * * * bacula echo "dedup scrub resume storage=Dedup" | $BCONS > $LOG

a softer solution limiting then bandwidth
#01 18 * * * bacula echo "dedup scrub_bwlimit=10mb/s storage=Dedup" | $BCONS > $LOG
#01 8 * * * bacula echo "dedup scrub_bwlimit=0 storage=Dedup" | $BCONS > $LOG

To limit the speed of the Scrub process, you can set the DedupScrubMaximumBandwidth directive on the Storage
resource in the bacula-sd.conf file. The default maximum bandwidth value is 50MB/s. This is the total amount that
the scrub can use, all the workers, and this amount will not be available for backup jobs.

Storage {
Name

...
DedupScrubMaximumBandwidth = 20MB/s

}

This value may be adjusted manually with a bconsole command:

* dedup scrub_bwlimit=10mb/s

Scrubbing is more effective after a “dedup vacuum checkmiss”. The checkmiss option forces the vacuum to create
dummy entries in the Index for every orphan reference found in the volumes. The Scrub process will resolve these
dummy entries when it finds a matching chunk. When the Scrub doesn’t find any related entry in the Index, the chunk
is marked as free. The checkvolume option of the vacuum command also creates dummy entries. See the differences
in the vacuum section.

$ cat /opt/bacula/scripts/dedup-scrub
#!/bin/sh

SD=Dedup1
LOG=/opt/bacula/working/scrub.log
PATH=$PATH:/opt/bacula/bin

exec 1>> $LOG
exec 2>> $LOG

date
(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 21

(continued from previous page)

echo "dedup vacuum checkmiss storage=$SD" | bconsole
echo "dedup scrub run storage=$SD" | bconsole
date

Scrubbing can be done by multiple threads, each of them handling one container at a time and should be able to reach a
throughput up to 400MB/s per CPU core (limited by the SHA512/256 calculation). The Scrub saves it’s state at regular
intervals and can restart from where it has been interrupted. The Scrub process doesn’t restart automatically after a
restart or a reboot.

The Scrub starts handling the containers that are largest to efficiently balance the work between the threads.

At the end, the Scrub process does a checkindex to check the coherence between the Index and the FSM and to detect
if an address is used twice or if an entry refers to an empty chunk.

The Scrub process can be controlled from bconsole via the dedup command:

*dedup
Dedup Engine choice:

1: Vacuum data files
2: Cancel running vacuum
3: Display data files usage
4: Scrub data files options

Select action to perform on Dedup Engine (1-4): 4
Dedup Engine Scrub Process choice:

1: Run Scrub
2: Stop Scrub
3: Suspend Scrub
4: Resume Scrub
5: Status Scrub

Select Scrub action to perform on Dedup Engine (1-5):

It is possible to run every Scrub sub-command from the command line:

* dedup scrub run storage=Dedup
* dedup scrub run worker=3 storage=Dedup
* dedup scrub run reset storage=Dedup

The “dedup scrub run” command starts the Scrub process. If the Scrub has been interrupted by a crash or a restart
of the daemon, the Scrub process will continue from its last saved point. Notice that the Scrub process doesn’t continue
automatically after a restart or a reboot. The “worker” option controls the number of threads, the default is one. The
“reset” option forces the Scrub to ignore its last saved point and restart from the beginning.

Other Scrub commands available:

* dedup scrub wait storage=Dedup
* dedup scrub stop storage=Dedup
* dedup scrub suspend storage=Dedup
* dedup scrub resume storage=Dedup

• wait. Wait until the end of the Scrub process.

• stop. Stop any running threads of the Scrub process.

• suspend. Suspend all the threads of the Scrub process.

• resume. Resume all the threads of the Scrub process.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 22

“suspend” and “resume” do not modify the options given to the “run” command. “stop” stops the threads and allows
a restart of the Scrub process using the “run” command and a different number of threads for example.

Finally you can get the status of last Scrub that has been started.

* dedup scrub status storage=Dedup
Scrubber: last_run="10-Aug-2017 12:05:38" started=1 suspended=0 paused=0 quit=0
pos=1225639597 pos=8% bw=44957018/50000000
* dedup scrub wait storage=Dedup
* dedup scrub status storage=Dedup
Scrubber: last_run="10-Aug-2017 12:05:38" started=0 suspended=0 paused=0 quit=1
pos=14453933383 pos=100% bw=3269270/50000000

The “status” sub-command tells you if the Scrub process is running, if it has been suspended by the user or paused
by the vacuum, the absolute position that is the total of all the bytes that have been read for all the containers, the
relative position in percent and also the disk bandwidth in bytes/s compared with what has been allowed by the variable
“scrub_bwlimit”. The position is updated every 10 seconds.

Some useful information is logged to the trace file. The “status” sub-command, displays the status of the Scrub
process for each container:

...
Scrub status [66] size=327677663 scrub_pos=-1 scrub_start=1502366453
Scrub status [67] size=327677780 scrub_pos=43670 scrub_start=1502367337
Scrub status [68] size=327679152 scrub_pos=0 scrub_start=0
...
Scrub status read_err=0 fix_err=0 feed=0
Scrub status fix miss=0 wrong=0 false_set=0 false_unset=0

Here, the Scrub process for container [66] is finished, container [67] is being processed and the Scrub process for
container [68] is still pending.

The position is in bytes, and must be compared to the size of the container on the left - also in bytes. The “scrub_start”
is the epoch when the Scrub started handling the container. The counters at the end of the output show the current
general statistics:

• read_err is the number of chunks that were unreadable from the disk, or corrupted and finally ignored. As
Holes are not yet skipped by the Scrub process, chunks in these areas will increment this counter.

• fix_err is the number of errors encountered when trying to fix an existing error

• feed is used internally and only relevant to our developers. It should always be 0.

• miss is the number of entries in the Index that were missing and have been resolved by the Scrub process.

• wrong is the number of entries in the Index that were pointing to the wrong chunk and that have been fixed by
the Scrub process.

• false_set is the number of chunks that were incorrectly marked as used, but were not required by the Index
and were then marked as free.

• false_unset is the number of chunks that were incorrectly marked as free, but required by the Index and were
then marked as used.

When the Scrub process finishes a container, it logs the statistics for this container in the trace file:

ScrubContainer [106] end pos=-1 fatal=0 read_err=0 fix_err=0 feed=0
ScrubContainer [106] fix miss=0 wrong=0 false_set=0 false_unset=0

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 23

At the end, the Scrub process performs a cleanup identical to the cleanup done by the vacuum “checkindex” command
and finally displays consolidated statistics for all of the containers.

cleanup_index_addr_duplicate unset2miss=1
cleanup index Phase 1 cnt=2362298 badaddr=0 suspect=0 unset=0 2miss=0 miss=0␣
→˓(count=2362299 err=0 2miss_err=0)
cleanup index Phase 2 cnt=2362298 2miss=0 (count=2362299 err=0 2miss_err=0)
Scrubber index cleanup chunk_read=0 chunk_read_err=0 chunkdb_err=0
ScrubContainer END read_err=0 fix_err=0 feed=0 cleanup=OK
ScrubContainer FIX miss=0 wrong=0 false_set=0 false_unset=0

4 Hardware Requirements

4.1 CPU

Bacula’s Global Endpoint Deduplication consumes CPU resources on both File Daemon and Storage Daemon. The
table below shows operations done by both daemons depending on the deduplication mode.

Note that the Storage Daemon has to re-calculate hashes of the chunks sent by the File Daemon to ensure the validity
of the data added to the Dedupengine.

Table 2: Operations done by each daemon

Dedup=none Dedup=storage Dedup=bothside

Client – – hash + compress
Storage – hash + compress + DDE decompress + hash + DDE

On recent Intel processors, compression and hash calculations each require about 1GHz of CPU power per 100MB/sec
(1Gbps). Decompression requires only 0.25GHz for the same throughput. The Dedupengine depends more on IOPs
rather than on CPU power (about 0.1GHz per 100MB/sec). Both daemons must also handle network and disks (around
1GHz per 100MB/sec).

The rules of thumb might be to dedicate 3GHz per 100MB/s for the File Daemon or the Storage Daemon when doing
deduplication.

Table 3: CPU requirements (Intel based)

100MB/sec (Gbps) 400MB/sec (4Gbps) 1000MB/s (10Gbps)
Client or storage 3GHz 12GHz 30GHz

Add about 50% more GHz for latest generation of AMD processors.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 24

4.2 Memory

The File Daemon requires additional RAM to do bothsides deduplication because it has to keep the chunks in memory
until the Storage Daemon sends a command to send or to drop a chunk of data. The extra memory required is about
4MB per running job.

The Storage Daemon also requires about 4MB of memory for every running job. The Dedupengine also needs more
of memory for efficient lookups in the index file, see section Dedupengine

4.3 Disks

On the File Daemon, the directive Enable Client Rehydration = yes can generate some extra reads during the
restore process and increase the disk load and possibly slow down the job.

On the Storage Daemon, chunks are stored randomly in Containers, and the disk systems might have to do significantly
more random I/O during backup and restore. Note that migration/copy and virtual full Jobs do not need to rehydrate
data if the destination device supports deduplication. Chunks are stored in 65 or more container files in the Dedup
Directory. All Volumes use references to those container files. This means that your system must be configured to
manage disk space and extend disk space if necessary. We advise you to use LVM, ZFS, or BTRFS.

For effective performance, it is strongly recommended to store the deduplication engine Index on dedicated solid state
storage, NVMe or SSDs. Please see section Dedupengine. It is not recommended to store deduplication engine con-
tainers on the same file systems the Catalog database resides on.

The index file used to associate SHA512/256 digests with data chunk addresses will be constantly accessed and updated
for each chunk backed up. Using solid state storage for the index file will give better performance. The number of I/O
operations per second that can be achieved will limit the global performance of the deduplication engine. For example,
if your disk system can do 10,000 operations per second, it means that your Storage Daemon will be able to write
between 5,000 and 10,000 blocks per second to your data disks. (310 MB/sec to 620 MB/sec with 64 KB block size,
5 MB/sec to 10 MB/sec with 1 KB block size). The index is shared between all concurrent Jobs.

To ensure thatfile systems required for containers, index, and volumes are mounted before the Storage Daemon starts,
you can edit the bacula-sd.service unit file

systemctl edit bacula-sd.service

This will create the file /etc/systemd/system/bacula-sd.service.d/override.conf to add bacula-sd.
service customized settings. Please add the following line to the file and save it:

RequiresMountsFor=/bacula/dedup/index /bacula/dedup/containers /bacula/dedup/volumes

Of course, paths may need to be adjusted per your actual configuration.

5 Installation

The recommended way to install deduplication plugin is using BIM, where the deduplication plugin installation can
happen alongside the installation of Storage Daemon, at the point of choosing the plugin.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 25

5.1 Linux

To install deduplication plugin for Linux, visit Linux: Install Storage Daemon and, in step 5, choose the dedup plugin.
If you have already installed SD, run the installation again and choose the dedup plugin.

Important: While going through the installation steps again, your configuration file will not be overwritten.

6 Restrictions and Limitations

• You must take care to define unique Media Types for Dedup Volumes that are different from Media Types for
non-Dedup Volumes.

• The “hole punching” feature is available on Linux systems with kernel 2.6.37 and later. The function was also
backported by RHEL to their 2.6.32 kernel (on RHEL 6.7). The feature is not available on FreeBSD or Solaris
OSes.

• Some files are not good candidates for deduplication. For example, a mail server using maildir format will have
a lot of small files, and even if one email was sent to multiple users, SMTP headers will probably interfere with
the deduplication process. Small files will tend to enlarge your chunk index file resulting in a poor dedup ratio.
A good dedup ratio of 20 for a file of 1024 bytes will save only 19 KB of storage, so much less gain than with a
file of 64 KB with a poor dedup ratio of 2.

• Dedup Volumes cannot just be copied for offsite storage. Dedup Volumes should stay where the deduplication
engine is running. In order to do offsite copies, it is recommended to run a Copy Job using a second Dedup
Storage Daemon for example, or to create rehydrated volumes with a Copy/Migration/Virtual Full job using
a regular disk Device. The VirtualFull support was added in version 8.0.7. The Storage Daemon to Storage
Daemon Copy/Migration process with deduplication protocol was added in version 8.2.0.

• A Virtual Full between two Storage Daemons is currently not supported.

• Data spooling cannot be used with deduplication. Since versions 8.2.12 and 8.4.10, data spooling is automatically
disabled whenever a device resource is configured with Device Type = Dedup.

• All Bacula Enterprise File Daemons (including Linux, FreeBSD, Solaris, Windows, . . .) support the Global
Endpoint Deduplication. The Community Bacula File Daemon supports only the Global Endpoint Dedupli-
cation in dedup=storage mode. The list of the platforms supported by Bacula Enterprise is available on
www.baculasystems.com.

• We strongly recommend that you update all File Daemons that are used to write data into Dedup Volumes. It is
not required, but old File Daemons do not support the newer FD to SD protocol, and consequently the Global
Endpoint Deduplication will done only on the Storage daemon side.

• The restart command has limitations with plugins, as it initiates the Job from scratch rather than continuing
it. Bacula determines whether a Job is restarted or continued, but using the restart command will result in a
new Job.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 26

https://www.baculasystems.com/bacula-enterprise-compatibility/

7 Best Practices

7.1 RAID

If you plan to use RAID for performance and redundancy, please note that read and write performances are essential for
the deduplication engine. The Index is highly accessed for reading and for writing during backup jobs run and during
the maintenance tasks required by the deduplication plugin. Also, the forceoptimize process that rebuilds the Index
strongly depends on the read and write performance of the disk infrastructure.

Some RAID solutions don’t fit the deduplication engine read and write performance requirements. RAID 10 is rec-
ommended for both the dedup index and dedup containers as it provides both redundancy of performance better than
RAID_1. Please note that many RAID solutions have better performance than RAID_5, thus RAID_5 should be avoided
if possible.

7.2 ZFS

If you plan to use ZFS file system to store the dedup index, it is important to guarantee that you have enough memory
and CPU resources in the Storage Daemon server to have both the deduplication plugin and ZFS in good condition.

The Global Endpoint Deduplication plugin does both deduplication and chunk compression. This means there is no
need to enable deduplication or compression in the zfs pool that will be used to store containers. In fact, it is not
recommended to have them enabled as it may cause slow performance and there will be no gain in space savings.

Aligned disk acess is a key factor when using ZFS. ZFS is able to detect the sector size of the drive, but disks can report
the emulated value instead. As we recommend solid state storage for the dedup Index, performance can be improved if
the ashift property is explicitly set to match the sector size of the underlying storage, which will often be 4096_bytes.

The disk block size is defined by the ashift value, but as ZFS stores data in records, there is another parameter that
determines the individual dataset to be written in the ZFS pool, this is the recordsize ZFS pool parameter.

Thus another important ZFS pool setting to consider is the recordsize value. It defaults to 128K in recent ZFS
versions. This value should be adjusted to match the typical I/O operations. For the ZFS pool used by the dedup
Index, it was reported that setting the recordsize to 8K increased the vacuum performance. In addition, setting the
ZFS kernel zfs_vdev_aggregation_limit_non_rotating parameter to the same value as recordsize highly
improved performance.

Please note these values are recommended for most SSD disks, but they may vary depending on the SSD model. For
example, 16K could fit some SSD models and give a better performance. We recommend to perform I/O benchmark
using different settings before the deduplication engine is setup in production.

Regarding the use of ZFS to store dedup containers, as it is not possible to preview the typical dataset because some
containers can be much more used than others, it is more probable that a recordsize value of 64K or even the 128K
default value are sufficient to have a good performance. However, it is important to not allow container files to grow
too much and limit the size of containers files to 3TB or 4TB.

7.3 Maximum Container Size

For better performance, it is strongly recommended to not allow container files to grow indefinitely even if the under-
lying file system supports very big files. This can be accomplished by setting the “Maximum Container Size” directive
in the Storage resource in the Storage Daemon configuration file. It is recommended to set this directive to a value
between 1 TB and 4 TB.

This setting is also recommended because container files cannot be shrunk. Once they grow, it is not possible to have
these files reduced in size. The holepunching process will not reduce the container file sizes by shrinking them.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 27

7.4 Vacuum and Scrub

It is strongly recommended to keep the deduplication engine healthy by regularly performing the maintenance tasks
triggered by the vacuum and scrub processes.

Please make sure to regularly run, in all deduplication engines in your environment, the following tasks: daily pruning
and truncation of volumes, a simple vacuum daily (it can be run weekly when not too many new chunks are added to
the deduplication engine), a dedup vacuum checkindex checkmisss monthly and the scrub process preferably outside
of the backup time windows.

These maintenance tasks can be scheduled in an Admin Job and they will help to clean both the deduplication engine
index and containers, marking unused entries in the index and chunks in containers, thus allowing capacity reuse. They
will also contribute to avoid invalid index entries to be used by backup jobs in case of any problems with the server
hosting the deduplication engine.

Below are examples of two Admin Jobs that can be used to run a weekly and monthly vacuum.

Job {
Name = "DedupSimpleVacuum_ADMTASK"
Type = "Admin"
Client = "bacula-fd"
Fileset = "LinuxHome"
Messages = "Standard"
Pool = "DiskBackup365d"
Priority = 10
Runscript {
Console = "dedup vacuum storage=MyDedupStorage"
FailJobOnError = no
RunsOnClient = no
RunsWhen = Before

}
Schedule = "Vaccum_daily_10AM"
Storage = "MyDedupStorage"

}

Schedule {
Name = "Vaccum_daily_10AM"
Enabled = yes
Run = at 10:00

}

Job {
Name = "DedupDeepVacuum_ADMTASK"
Type = "Admin"
Client = "bacula-fd"
Fileset = "LinuxHome"
Messages = "Standard"
Pool = "DiskBackup365d"
Priority = 10
Runscript {
Console = "dedup vacuum checkindex checkmiss storage=MyDedupStorage"
FailJobOnError = no
RunsOnClient = no
RunsWhen = Before

}
(continues on next page)

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 28

(continued from previous page)

Schedule = "Vaccum_monthly_secondSunday_11AM"
Storage = "MyDedupStorage"

}

Schedule {
Name = "Vaccum_monthly_secondSunday_11AM"
Enabled = yes
Run = 2nd Sun at 11:00

}

In an Admin Job, the Fileset and the Pool configured are not used. Thus, you can setup any valid value available in
your Bacula Enterprise environment configuration.

7.5 Holepunching

The holepunching process allows you to mark unused chunks in container files as free after a successful vacuum is
run. This process will punch a hole in the file and it is required that the underlying file system support holes. We do
recommend to use file systems that support hole punching, such as xfs and ext4.

It is important to note that the released amount of space will depend on the I/O block size of the underlying file system.
This means that, if you have a file system configured with block size of 4 MB, only entire blocks of 4 MB will be
released to the system to be used by either container files or other files in the file system.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 29

	Executive Summary
	Deduplication
	Advantages of Deduplication
	Cautions About Using Deduplication
	Aligned Volumes
	Global Endpoint Deduplication
	How Bacula Global Endpoint Deduplication Works
	Client Side Rehydration
	Storage Daemon Deduplication Related Directives
	Deduplication Related Director Daemon Fileset Directive
	Deduplication Related File Daemon Directive
	Things to Know About Bacula
	Deduplication Engine Vacuum
	Deduplication Engine Status
	Disaster Recovery

	Dedupengine
	Sizing the Index
	Commands to Tune the Index
	Punching holes in containers
	Quiesce and Unquiesce
	Detect, Report and Repair Dedupengine Inconsistencies

	Hardware Requirements
	CPU
	Memory
	Disks

	Installation
	Linux

	Restrictions and Limitations
	Best Practices
	RAID
	ZFS
	Maximum Container Size
	Vacuum and Scrub
	Holepunching

