
PostgreSQL Plugin
Bacula Systems Documentation

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 1

Contents

1 Scope 2

2 Features 2

3 Backup Strategies 3

4 Installation 4

5 Configuration 4

6 Operations 11

7 Limitations 16

Contents

This chapter aims at presenting the reader with information about the Bacula Enterprise PostgreSQL
Plugin. The document briefly defines the scope of its operations, describes the target technology of the
Plugin, and presents its main features and various techniques and strategies to backup PostgreSQL with
Bacula Enterprise.

1 Scope

This Plugin is available for 32 and 64-bit Linux platforms, and supports all officially supported Post-
greSQL versions since version 8.4.

2 Features

The PostgreSQL Plugin is designed to simplify backup and restore procedure of PostgreSQL clusters,
so that the backup administrator does not need to know about internals of Postgres backup techniques or
write complex scripts. The Plugin will automatically take care of backing up essential information such
as configuration, users definition or tablespace.

The PostgreSQL Plugin supports both Dump and Point In Time Recovery (PITR) backup techniques.

The PostgreSQL Plugin is compatible with Copy/Migration jobs. Read the CopyMigrationJobsReplica-
tion for more information.

2 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

3 Backup Strategies

The following article presents the comparison of backup strategies for the PostgreSQL Plugin.

3.1 Choosing Between PITR and Dump

The following table helps choosing between backup techniques supported by the Bacula Enterprise Post-
greSQL Plugin. Major functionalities such as being able to restore databases to any point in time, or
being able to filter objects during backup or restore should be used to guide through the backup design.
It is quite common to combine Dump and PITR techniques for the same Cluster. In the table, the Cus-
tom format corresponds to the Custom Dump format of pg_dump and the Dump format of our Plugin
corresponds to the plain format of pg_dump.

Note: Regardless the backup method used, no temporary local disk space is necessary to save any
temporary file.

Table 1: PostgreSQL dump vs PITR backup

Custom 1 Dump PITR
Can restore directly a single object (table, schema, . . .) Yes No No
Backup speed Slow Slow Fast
Restore speed Slow Very Slow Fast
Backup size Small Small Big
Can restore at any point in time No No Yes
Incremental/Differential support No No Yes
Can restore in parallel Yes 2 No –
Online backup Yes Yes Yes
Consistent Yes Yes Yes
Can restore to previous major version of PostgreSQL No Yes 3 No
Can restore to newer major version of PostgreSQL Yes Yes No

1 Custom Dump format is the default.

2 Run the most time-consuming parts of pg_restore - those which load data, create indexes, or create
constraints - using multiple concurrent jobs. This option can dramatically reduce time to restore a large
database to a server running on a multiprocessor machine. It requires to store the Dump to the disk first.

3 To restore a SQL plain Dump to a previous version of PostgreSQL, you might have to edit the SQL
file if you are using some features that are not available in the previous version. Generally, restoring to
a previous version of PostgreSQL is not supported or not guaranteed.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 3

4 Installation

4.1 Prerequisites

As with all Bacula plugins, the Plugin Directory directive in the FileDaemon resource of the
bacula-fd.conf file needs to be set:

FileDaemon {
Name = test-fd
...
Plugin Directory = /opt/bacula/plugins

}

4.2 PostgreSQL Installation with BIM

In order to install the PostgreSQL Plugin with BIM, install the File Daemon with BIM and choose to
install the PostgreSQL Plugin during the FD installation.

Click here for more details on the plugin installation process with BIM.

4.3 PostgreSQL Plugin Installation with Package Manager

The PostgreSQL Plugin is available as a Bacula Enterprise package for all supported platforms.

The Plugin must be installed on the primary node in the PostgreSQL Cluster. The PostgreSQL client soft-
ware package, usually “postgresql-client”, should also be installed as it provides tools such as pg_dump
and psql which are used by the plugin, or may be useful for diagnostic purposes.

In order to get information and/or data from the PostgreSQL database, the Bacula Enterprise Plugin uses
PostgreSQL standard commands using the unix “postgres” user. This user account needs to be able to
connect to the Cluster without interactive password dialog. Such a configuration (which is the default
one) can be achieved using the following entry in pg_hba.conf. The following entry should be the first
one in the list:

local all postgres ident

If remote databases need to be accessed, or disabling the interactive password authentication method is
not an option, it is possible to define a pgpass file.

5 Configuration

The following chapter aims at presenting how to configure the PostgreSQL Plugin.

4 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

5.1 Automatic Object Integration

Since Bacula version 16.0.7, a new solution has been introduced, so that each object can be backed up
separately with different Jobs to maximize the throughput and the resiliency. It is highly recommended
to use this new solution for that purpose - Automatic Object Integration (Scan Plugin). See an example
for PostgreSQL.

5.2 PITR Configuration

PostgreSQL Server Configuration for PITR

In order to use the Point In Time Recovery feature of PostgreSQL, WAL Archiving needs to be enabled.
The procedure differs between major PostgreSQL version, so we advise to read the PostgreSQL docu-
mentation corresponding to the Cluster version; for PostgreSQL version 9.1, for example, it can be found
here: http://www.postgresql.org/docs/9.1/static/continuous-archiving.html

Basically, on 8.4, the archive_command and the archive_mode settings need to be configured.

on 8.3 - 8.4
archive_mode = on
archive_command = 'test ! -f /mnt/waldir/%f && cp %p /mnt/waldir/%f'

For 9.x, it is needed to configure archive_command, wal_level, and archive_mode.

on 9.0 - 9.1
wal_level = archive
archive_mode = on
archive_command = 'test ! -f /mnt/waldir/%f && cp %p /mnt/waldir/%f'

The /mnt/waldir directory should be purged from time to time when backup jobs are successful. We
do not recommend to remove WAL files just after a backup job. If something is going wrong with the
backup job and files are no longer on the database server, it will not be possible to easily re-start the
backup job.

This example will remove WAL files older than 14 days
find /mnt/waldir -type f -mtime +14 -exec rm -f {} \;

As shown below, the PostgreSQL plugin needs to know where WAL files are stored after archiving. In
this example, archive_dir would point to /mnt/waldir.

Note: It may be useful to compress WAL files in the archive_command using something like:

archive_command = ‘test ! -f /mnt/waldir/%f.gz && gzip -c %p > /mnt/waldir/%f.gz’

In this case, the restore_command in recovery.conf will need to be modified during the restore, as
the PostgreSQL Plugin will not be able to reverse the custom archive_command automatically. It is
good practice to put the needed restore_command command as comment into the postgresql.conf.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 5

http://www.postgresql.org/docs/9.1/static/continuous-archiving.html

PostgreSQL Plugin Configuration for PITR

With the PITR option, the PostgreSQL Plugin uses Accurate mode information to handle Differential
backups, thus the Accurate option in the backup Job resource needs to be enabled. If Accurate mode is
not used in Differential level backups, orphan data files in the Cluster directory may occur when restoring.
Note that using Accurate mode is not mandatory only Full and Incremental backups are planned.

Job {
Name = "Postgresql-PITR"
Client = laptop1-fd
Fileset = FS_postgresql
Accurate = yes
...
}

Fileset {
Name = FS_postgresql
Include {

Options {
Signature = MD5
Compression = GZIP

}
Plugin = "postgresql: mode=pitr"

}
}

In the PITR mode, the PostgreSQL Plugin also accepts the parameters listed here.

If PostgreSQL clusters are planned to be restored using the file relocation feature of Bacula, it is useful
to use the PrefixLinks directive in the prepared Restore Job.

For example, if symbolic links in the PGDATA cluster directory are used, like for pg_wal1 or tablespaces,
the default Restore Job will re-create those symbolic links pointing to their original locations and not the
restored datas directory, which will break PostgreSQLs recovery process.

On the other hand, if restored files are planned to be moved to their original locations later, outside of
Bacula’s restore process, all files linked with absolute names will be broken.

1 In old versions of postgresql (<= 9.x), pg_wal was pg_xlog - it was renamed in version 10.

6 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

PostgreSQL Plugin Options in PITR Mode

Table 2: PostgreSQL Plugin Options in PITR Mode

Option Comment De-
fault

Example

mode=pitr Needed to enable PITR backup. cus-
tom

abort_on_errorAbort the job after a connection error with PostgreSQL (available
with Bacula Enterprise 8.2.0 and later).

not
set

abort_on_error

archive_dirShould point to where you are archiving WAL with the
archive_command.

pg_wal

bin_dir PostgreSQL binaries location. bin_dir=/opt/pg9.1/bin
fast_backupUse fast backup option in pg_backup_start() procedure. It will cre-

ate a peak of IO if used.
false fast_backup

pgpass Path to PostgreSQL password file. pg-
pass=/etc/pgpass

user PostgreSQL Unix super user. A standard user cannot be used here. post-
gres

user=dba

service PostgreSQL connection information. ser-
vice=main

timeout Specify a custom timeout (in secs) for commands sent to Post-
greSQL.

300 time-
out=600

tmp_dir Where the plugin will create files and scripts for the database
backup (available with Bacula Enterprise 6.6.6 and later).

/
tmp

tmp_dir=/othertmp

use_sudo Use sudo to execute Postgresql commands. use_sudo
unix_user Use specific unix user to execute Postgresql commands. The unix

user owning the cluster is required.
post-
gres

unix_user=bob

Backup Level in PITR

When using PITR mode, depending on the Job level, the PostgreSQL Plugin will do the following:

• For a Full backup, the Plugin will backup the data directory and all WAL files generated during
the backup.

• During an Incremental backup, the Plugin will force the switch of the current WAL, and will
backup WAL files generated since the previous backup.

• During a Differential backup, the Plugin will backup data files that changed since the latest Full
backup, and it will backup WAL files generated during the backup.

Note: It is not possible to run two concurrent Full or Differential jobs at the same time.

where (1) is period between the latest Incremental and the new Full or Differential backup.

Note: It is recommended to visit ScheduleConsiderationForPITR for further information.

Note that replaying a long list of WAL files may take considerable time on a large system with lot of
activities.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 7

Fig. 1: Backup Level Impact in PITR Mode

Schedule Consideration for PITR

In order to be able to restore to any point in time between the latest Incremental and a previous Full or
Differential backup (see the (1) area in figure pg-level), it is good practice to schedule an Incremental to
the same time of Full or Differential backups. The Maximum Concurrent Jobs setting on the Client
and the Job resource should allow to run two jobs concurrently.

Schedule {
Name = SCH_PostgreSQL

Run = Full 1st sun at 23:05
Run = Differential 2nd-5th sun at 23:05
Run = Incremental mon-sun at 23:05

}

Without this schedule configuration, it will not be possible to restore to a specific point in time during
the period between the latest Incremental backup and the next Full or Differential backup. Note that
disabling Allow Duplicate Jobs prevents starting two Full backup Job at the same time.

5.3 Dump Configuration

With the Dump option, Bacula cannot perform Incremental or Differential backup.

Job {
Name = "Postgresql-dump"
Client = laptop1-fd
Fileset = FS_postgresql_dump
...
}

(continues on next page)

8 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

(continued from previous page)

Fileset {
Name = FS_postgresql_dump
Include {
Options {
Signature = MD5
Compression = GZIP

}
Plugin = postgresql

}
}

With the above example, the Plugin will detect and backup all databases of the Cluster.

Fileset {
Name = FS_postgresql
Include {
Options {
Signature = MD5
Compression = GZIP

}
Plugin = "postgresql: database=bacula"
Plugin = "postgresql: database=master"

}
}

In this example, the Plugin will backup only the databases bacula and master.

In Dump mode, the PostgreSQL Plugin also accepts the parameters listed here.

Fileset {
Name = FS_postgresql_dump
Include {
Options {
Signature = MD5

}
Plugin = "postgresql: use_sudo user=rob dump_opt=\"-T temp\""

}
}

In this example, the PostgreSQL Plugin will use the Unix account “rob” to perform a Custom Dump
backup with the PostgreSQL “rob” account excluding tables named “temp”.

In order to use the sudo wrapper, it is needed to comment out the following option in /etc/sudoers.

Defaults requiretty

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 9

PostgreSQL Plugin Options in Dump Mode

Table 3: PostgreSQL Plugin Options in Dump Mode

Option Comment Default Example
dump_opt This string will be passed to the pg_dump command.

1
-c -b -F
p

dump_opt=”-c”

user PostgreSQL user to use for PostgreSQL commands. postgres user=rob
unix_user Unix user to use for PostgreSQL commands. 2 set to

user
unix_user=pg1

service pg_service to use for PostgreSQL commands. service=main
pgpass Path to PostgreSQL password file. pg-

pass=/etc/pgpass
use_sudo Use sudo instead to run PostgreSQL commands (when

not root).
use_sudo

compress Use pg_dump compression level. 0-9, 0 is off. 0 compress=5
database Will backup on databases matching this string. database=prod*
exclude Will exclude databases matching this string. 5 exclude=test*
bin_dir PostgreSQL binaries location. bin_dir=/opt/pg9.1/bin
tmp_dir Where the plugin will create files and scripts for the

database backup. 3
/tmp tmp_dir=/othertmp

abort_on_errorAbort the job after a connection error with Post-
greSQL. 4

not set abort_on_error

timeout Specify a custom timeout (in secs) for commands sent
to PostgreSQL.

60 sec-
onds

timeout=120

1 The dump_opt option cannot be used to backup remote servers. Please use PGSERVICE instead

2 Available with Bacula Enterprise 8.4.12 and later.

3 Available with Bacula Enterprise 6.6.6 and later.

4 Available with Bacula Enterprise 8.2.0 and later.

5 Available with Bacula Enterprise 14.0.5 and later.

Note: The database and exclude options support regex.

5.4 Service Connection Information

The connection service file allows PostgreSQL connection parameters to be associated with a single
service name. That service name can then be specified by a PostgreSQL connection, and the associated
settings will be used.

The connection service file can be a per-user service file at `` /.pg_service.conf``, can have its location
specified by the environment variable PGSERVICEFILE, or it can be a system-wide file at /etc/
pg_service.conf or in the directory specified by the environment variable PGSYSCONFDIR. If ser-
vice definitions with the same name exist in the user and the system files, the user file takes precedence.

The file uses an INI file format where the section name represents the service name and the parameters
are connection parameters; see http://www.postgresql.org/docs/9.1/static/libpq-connect.html for a list.
For example:

10 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

http://www.postgresql.org/docs/9.1/static/libpq-connect.html

comment
[main]
port=5433

If a password is needed to connect, the pgpass option in the Plugin command string can be used to make
the Plugin define the needed PGPASSFILE environment variable.

5.5 Testing Database Access

The estimate command can be used to verify that the PostgreSQL Plugin is well configured.

* estimate listing job=pg-test
...

If estimate or the job output displays the following error:

Error: Can't reach PostgreSQL server to get database config.

the next steps should be to verify that the Bacula Enterprise PostgreSQL plugin can retrieve information
using the psql command as “postgres” user on the Client.

To verify if the “postgres” user can connect to the PostgreSQL Cluster, the psql -l command can be
used, and it should list all databases in the Cluster:

postgres% psql -l
List of databases
Name | Owner |

-----------+----------+
postgres | xxx
template0 | xxx
template1 | xxx

If options such as -h localhost are needed on the psql command line, a service file as described in
servicecon will be required.

6 Operations

The following chapter aims at presenting possible operations with the PostgreSQL Plugin.

6.1 Backup

Estimate Information

The estimate command will display all information found by the PostgreSQL Plugin.

Note: In Dump mode, Bacula can not compute the Dump size for databases, so it will display database
size instead.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 11

Backup Information in Dump Mode

The PostgreSQL Plugin will generate the following files for a Cluster containing the single database
“test”:

@PG/main/roles.sql
@PG/main/postgresql.conf
@PG/main/pg_hba.conf
@PG/main/pg_ident.conf
@PG/main/tablespaces.sql

@PG/main/test/createdb.sql
@PG/main/test/schema.sql
@PG/main/test/data.sqlc

Table 4: Backup Content in Dump Mode

File Context Comment
roles.sql global List of all users, their password and specific options
postgresql.conf global PostgreSQL cluster configuration
pg_hba.conf global Client connection configuration
pg_ident.conf global Client connection configuration
tablespaces.sql global Tablespaces configuration for the PostgreSQL cluster
createdb.sql database Database creation script
schema.sql database Schema database creation script
data.sqlc database Database data in custom format, contains everything needed to restore
data.sql database Database data in dump format

6.2 Restore

Restoring Using Dumps

Restoring Users and Roles

To restore roles and users to a PostgreSQL Cluster, the roles.sql file located in /@PG/<service>/
roles.sql needs to be selected.

Then, using where=/ or where=, the Plugin will load this SQL file to the database. If some roles already
exist, errors will be printed to the Job log.

Note: It is possible to restore the roles.sql file to a local directory, edit it, and load it using psql to
restore only a selection of its original contents.

12 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

Fig. 2: PostgreSQL Cluster Contents During Restore

Restoring Database Structure

To restore only the database structure using the Bacula Enterprise Postgresql Plugin, the file createdb.
sql located in the database directory needs to be selected during the restore process. To recreate the
SQL database schema, the schema.sql file is used which contains all commands needed to recreate the
database schema. The schema.sql file must be restored to disk and loaded manually into the database
using the psql command.

Restoring Single Database

To restore a single database with the Bacula Enterprise Postgresql Plugin, the appropriate files from the
database directory are selected during the restore process.

To restore the database with its original name, the selection should only contain the data file (data.sqlc
or data.sql). If the createdb.sql file is also selected, harmless messages might be printed during
the restore.

Fig. 3: Database Contents During Restore

To restore a single database to a new name, the two files createdb.sql and data.sqlc (or data.sql)
must be selected. The where parameter is used to specify the new database name. If where is set to a
single word consisting of only a..z, 0-9 and _, Bacula will create the specified database and restore the
data into it.

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 13

* restore where=baculaold
...
cwd is: /
$ cd /@PG/main/bacula
cwd is: /@PG/main/bacula/
$ m data.sqlc
$ m createdb.sql
$ ls
schema.sql
*data.sqlc
*createdb.sql

If the restore process has an error such as ERROR: database "xxx" already exists, the
createdb.sql can be skipped in the restore selection.

If the replace parameter is set to never, Bacula will check the database list, and will abort the Job if the
database currently restored already exists.

Using replace=always is not recommended.

If the where parameter is a directory (containing /), Bacula will restore all files into this directory. Doing
so, it is possible to use pg_restore directly and restore only particular contents, such as triggers, tables,
indexes, etc.

Note: Some databases such as template1, postgresql or databases with active users can not be
replaced.

Restoring Dump Files to Directory

To restore SQL dumps to a directory, the where parameter needs to be set to indicate an existing directory.

* restore where=/tmp

Restoring Single Table

To restore a single item such as a table, it is currently needed to restore the dump file to a directory and
use the pg_restore command.

Restoring Complete Cluster Using PITR

Useful information for this disaster recovery scenario can be found in the PostgreSQL manual, for ex-
ample at: http://www.postgresql.org/docs/9.1/static/continuous-archiving.html

The overall process is as follows:

1. Stop the server, if it’s running.

2. If the space to do so is available, the whole Cluster data directory and any tablespaces should be
copied to a temporary location in case they are needed later.

It is very important to use the “-a” parameter to copy the files, so that the files retain their
ownership

14 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

http://www.postgresql.org/docs/9.1/static/continuous-archiving.html

root@dc-u24Postgres16db-test:/var/lib/postgresql/16/main# cp -a pg_wal/*␣
→˓/tmp/pg_wal.backup/
root@dc-u24Postgres16db-test:/var/lib/postgresql/16/main# ls -lhtr /tmp/
→˓pg_wal.backup/
total 97M
-rw------- 1 postgres postgres 16M Jul 2 17:18 000000010000000000000001
-rw------- 1 postgres postgres 16M Jul 2 17:18 000000010000000000000002
-rw------- 1 postgres postgres 349 Jul 2 17:18␣
→˓000000010000000000000002.00000028.backup
-rw------- 1 postgres postgres 16M Jul 2 17:26 000000010000000000000003
-rw------- 1 postgres postgres 16M Jul 2 17:26 000000010000000000000004
-rw------- 1 postgres postgres 370 Jul 2 17:26␣
→˓000000010000000000000004.00000028.backup
-rw------- 1 postgres postgres 16M Jul 2 17:36 000000010000000000000005
drwx------ 2 postgres postgres 4.0K Jul 2 17:36 archive_status
-rw------- 1 postgres postgres 16M Jul 2 17:36 000000010000000000000006
root@dc-u24Postgres16db-test:/var/lib/postgresql/16/main#

Note: This precaution will require having enough free space to hold two copies of the existing
databases. If enough space is not available, at least the contents of the pg_wal subdirectory of the
Cluster data directory should be copied, as it may contain logs which were not archived before the
system went down.

3. Clean out all existing files and subdirectories below the Cluster data directory and the root direc-
tories of any tablespaces being used.

4. Restore the database files from the backups. If tablespaces are used, it is strongly recommended
to verify that the symbolic links in pg_tblspc/ were correctly restored. The PrefixLinks restore
Job option can be useful here.

5. Any files present in pg_wal can be removed; these came from the backup and are therefore prob-
ably obsolete rather than current. Normally, this directory should be empty after a restore.

6. If there are unarchived WAL segment files that were saved in the step 2, they need to be copied
back into pg_wal/ (it is best to copy, not move them, so that the unmodified ones are available if
a problem occurs and the process needs to be done again).

7. The recovery command file recovery.conf.sample inside the Cluster data directory may need
to be edited and renamed to postgresql.recovery.conf. It may be useful to temporarily mod-
ify pg_hba.conf to prevent ordinary users from connecting until the recovery has been verified.

8. Start the server. The server will go into recovery mode and proceed to read through the archived
WAL files it needs. Should the recovery be terminated because of an external error, the server
can simply be restarted and it will continue recovery. Upon completion of the recovery process,
the server will rename recovery.conf to recovery.done (to prevent accidentally re-entering
recovery mode in case of a later crash) and then commence normal database operations.

su postgres
$ cd /path/to/the/data/directory
$ mv recovery.conf.sample recovery.conf
$ vi recovery.conf
$ pg_ctl -D $PWD start

9. The contents of the databases restored should be verified to ensure it was recovered to the desired

Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners. 15

state. If not, return to step 1.

10. If all is well, users can be allowed to connect by restoring pg_hba.conf to its normal contents.

Warning: About tablespaces and symlinks:

When applying logs, PostgreSQL needs to create the tablespace directory to re-create the tablespace,
and PostgreSQL doesn’t support the relocation. So, when replaying logs, it will overwrite or fail on
this operation.

7 Limitations

• Postgres developers didn’t implement the backup routines with data deduplication in mind, there-
fore the results may not be ideal. However the cluster command may be used at times to enhance
the deduplication ratio as it physically reorders the data according to the index information. How-
ever, notice that this command requires exclusive lock while it is running, and also may quite heavy
on CPU and I/O resources.

• In PITR mode, each Job should contain a single Cluster. To backup multiple clusters installed on
the same client, multiple jobs are needed.

• In Dump mode, PostgreSQL version 8.3 and earlier may not support automatic restore through
the Bacula Enterprise PostgreSQL plugin. The pg_restore program can produce the following
error: WARNING: invalid creation date in header. In this case, it is needed to restore
data to a directory, and run pg_restore in a terminal.

• The clean option requires PostgreSQL 9.1 or later.

• The backup will include all files in the data directory and tablespaces, including the configuration
files and any additional files placed in the directory by third parties, except certain temporary files
managed by PostgreSQL. But only regular files and directories are copied, except that symbolic
links used for tablespaces are preserved. Symbolic links pointing to certain directories known to
PostgreSQL are copied as empty directories. Other symbolic links and special device files are
skipped. See: https://www.postgresql.org/docs/current/protocol-replication.html for the precise
details.

• The restart command has limitations with plugins, as it initiates the Job from scratch rather than
continuing it. Bacula determines whether a Job is restarted or continued, but using the restart
command will result in a new Job.

16 Copyright © 2025 Bacula Systems. All trademarks are the property of their respective owners.

https://www.postgresql.org/docs/current/protocol-replication.html

	Scope
	Features
	Backup Strategies
	Choosing Between PITR and Dump

	Installation
	Prerequisites
	PostgreSQL Installation with BIM
	PostgreSQL Plugin Installation with Package Manager

	Configuration
	Automatic Object Integration
	PITR Configuration
	PostgreSQL Server Configuration for PITR
	PostgreSQL Plugin Configuration for PITR
	PostgreSQL Plugin Options in PITR Mode
	Backup Level in PITR
	Schedule Consideration for PITR

	Dump Configuration
	PostgreSQL Plugin Options in Dump Mode

	Service Connection Information
	Testing Database Access

	Operations
	Backup
	Estimate Information
	Backup Information in Dump Mode

	Restore
	Restoring Using Dumps
	Restoring Users and Roles
	Restoring Database Structure
	Restoring Single Database
	Restoring Dump Files to Directory
	Restoring Single Table

	Restoring Complete Cluster Using PITR

	Limitations

